Daniel Bussinger de Souza Penna , Samara Gumiéro Costa , Juliana Santos Romão , Karin da Costa Calaza , Karen de Jesus Oliveira , Alexandre dos Santos Rodrigues , Pablo Pandolfo
{"title":"Age- and sex-dependent participation of the endocannabinoid system in locomotion and risk assessment of an ADHD rat model","authors":"Daniel Bussinger de Souza Penna , Samara Gumiéro Costa , Juliana Santos Romão , Karin da Costa Calaza , Karen de Jesus Oliveira , Alexandre dos Santos Rodrigues , Pablo Pandolfo","doi":"10.1016/j.pbb.2025.173969","DOIUrl":null,"url":null,"abstract":"<div><div>Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder affecting individuals across age groups. Impairments in executive function characterize ADHD and are often associated with elevated levels of risk-taking behaviors. The endocannabinoid system plays a crucial role in modulating prefrontal cortex circuits. Here, we assessed the effects of acute pharmacological manipulation of cannabinoid CB1 and CB2 receptors on locomotion and risk assessment/anxiety-like behaviors in an ADHD animal model during adolescence and adulthood. Further, we investigated the protein levels and gene expression of endocannabinoid system components (CB1, CB2, FAAH, MAGL) in the prefrontal cortex at both ages. During adolescence, activation of cannabinoid receptors aggravated the hyperactivity and risky behaviors of the ADHD model. These behavioral traits were more evident in female rats. In adulthood, manipulation of cannabinoid receptors did not alter hyperactivity but worsened risk assessment. Overall, gene expression levels of receptors and enzymes of the endocannabinoid system were increased in the ADHD model. Our findings suggest that the endocannabinoid system may operate differently in ADHD, and manipulating this system, especially in adolescents, could exacerbate deficits in inhibitory control.</div></div>","PeriodicalId":19893,"journal":{"name":"Pharmacology Biochemistry and Behavior","volume":"248 ","pages":"Article 173969"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacology Biochemistry and Behavior","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0091305725000164","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder affecting individuals across age groups. Impairments in executive function characterize ADHD and are often associated with elevated levels of risk-taking behaviors. The endocannabinoid system plays a crucial role in modulating prefrontal cortex circuits. Here, we assessed the effects of acute pharmacological manipulation of cannabinoid CB1 and CB2 receptors on locomotion and risk assessment/anxiety-like behaviors in an ADHD animal model during adolescence and adulthood. Further, we investigated the protein levels and gene expression of endocannabinoid system components (CB1, CB2, FAAH, MAGL) in the prefrontal cortex at both ages. During adolescence, activation of cannabinoid receptors aggravated the hyperactivity and risky behaviors of the ADHD model. These behavioral traits were more evident in female rats. In adulthood, manipulation of cannabinoid receptors did not alter hyperactivity but worsened risk assessment. Overall, gene expression levels of receptors and enzymes of the endocannabinoid system were increased in the ADHD model. Our findings suggest that the endocannabinoid system may operate differently in ADHD, and manipulating this system, especially in adolescents, could exacerbate deficits in inhibitory control.
期刊介绍:
Pharmacology Biochemistry & Behavior publishes original reports in the areas of pharmacology and biochemistry in which the primary emphasis and theoretical context are behavioral. Contributions may involve clinical, preclinical, or basic research. Purely biochemical or toxicology studies will not be published. Papers describing the behavioral effects of novel drugs in models of psychiatric, neurological and cognitive disorders, and central pain must include a positive control unless the paper is on a disease where such a drug is not available yet. Papers focusing on physiological processes (e.g., peripheral pain mechanisms, body temperature regulation, seizure activity) are not accepted as we would like to retain the focus of Pharmacology Biochemistry & Behavior on behavior and its interaction with the biochemistry and neurochemistry of the central nervous system. Papers describing the effects of plant materials are generally not considered, unless the active ingredients are studied, the extraction method is well described, the doses tested are known, and clear and definite experimental evidence on the mechanism of action of the active ingredients is provided.