Addiction is a serious condition that leads to negative changes in the central nervous system. Although there have been significant advancements in medication treatments for substance use disorders (SUDs), it is clear that there is a need to implement these developments in clinical settings to explore new therapeutic approaches for helping individuals with SUDs. Minocycline, a semi-synthetic second-generation tetracycline, possesses neuroprotective and anti-inflammatory properties. Recent studies have shown promising results when using this drug for the treatment of substance misuse. This study aimed to review the pre-clinical and clinical studies assessing the therapeutic efficacy of minocycline on drug-related outcomes, including reward, tolerance, withdrawal, impairments, and toxicity. We conducted a systematic review to assess the effectiveness of minocycline in ameliorating drug-induced outcomes per the PRISMA guidelines. Electronic medical databases Web of Science, PubMed/Medline, Scopus, and Google Scholar were searched from databases from their inception date until December 2023. 56 of the 623 articles met the eligible criteria for analysis. Of the 56 articles reviewed, 51 were conducted on animals, while 5 involved human subjects. Our study indicates that the majority of animal studies have primarily focused on morphine and alcohol, with no research found to date on the effects of cannabis. This review highlights minocycline's potential in addiction treatment through its effects on anti-inflammatory mechanisms, neuroprotection, regulation of synaptic plasticity. Results of this study suggest that although minocycline shows promise in experiments, its effectiveness in humans may be limited by dosage, individual variability, and addiction's complexity. Further clinical studies are required to clarify the optimal dose, duration of administration, and delivery route and focus on identifying specific conditions where it may be most effective.
Previous studies have driven the notion that the cannabis constituent cannabidiol could be an effective adjunct to opioid administration for managing pain. Most of these studies have used experimental rodents with routes of administration, such as subcutaneous and intraperitoneal, that do not correspond with the routes used in clinical practice. In response to this, we tested the ability of cannabidiol co-administration to augment opioid analgesia via the more clinically-relevant oral route of administration. To this end, male and female rats were orally gavaged with cannabidiol (25 mg/kg), oxycodone (1.4 mg/kg), or a combination of both, after which they were tested in an operant thermal orofacial pain assay in which they voluntarily exposed their faces to cutaneous thermal pain to receive a palatable reward. All three drug conditions produced analgesic effects of varying degrees, being most profound in the combination group where a statistically significant enhancement over oxycodone-induced analgesia alone was evident. Additionally, oxycodone administration decreased lick frequencies - a measure of motor coordination of rhythmic movements - which too was magnified by co-administration of cannabidiol. Together these studies provide further support of an ability of cannabidiol to augment opioid effects, particularly analgesia, when administered by a route relevant to human pain management. As such, they encourage the notion that cannabidiol could find utility as an opioid-sparing approach to treating pain.