Unveiling the exsolution mechanisms and investigation of the catalytic processes of Sr2FeMo0.65Ni0.35O6-δ using in situ transmission electron microscopy

IF 10.9 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nano Today Pub Date : 2025-02-08 DOI:10.1016/j.nantod.2025.102649
Pritam K. Chakraborty , Stephanie E. Wolf , Govind Ummethala , Ansgar Meise , Tobias Mehlkoph , Junbeom Park , Marc Heggen , Amir H. Tavabi , Vaibhav Vibhu , André Karl , Eva Jodat , L.G.J. (Bert) de Haart , Rafal E. Dunin-Borowski , Shibabrata Basak , Rüdiger-A. Eichel
{"title":"Unveiling the exsolution mechanisms and investigation of the catalytic processes of Sr2FeMo0.65Ni0.35O6-δ using in situ transmission electron microscopy","authors":"Pritam K. Chakraborty ,&nbsp;Stephanie E. Wolf ,&nbsp;Govind Ummethala ,&nbsp;Ansgar Meise ,&nbsp;Tobias Mehlkoph ,&nbsp;Junbeom Park ,&nbsp;Marc Heggen ,&nbsp;Amir H. Tavabi ,&nbsp;Vaibhav Vibhu ,&nbsp;André Karl ,&nbsp;Eva Jodat ,&nbsp;L.G.J. (Bert) de Haart ,&nbsp;Rafal E. Dunin-Borowski ,&nbsp;Shibabrata Basak ,&nbsp;Rüdiger-A. Eichel","doi":"10.1016/j.nantod.2025.102649","DOIUrl":null,"url":null,"abstract":"<div><div>Solid oxide cells (SOCs) are likely to play crucial role in the green energy transition, but their widespread adoption is hindered by degradation issues, particularly catalyst agglomeration. Nanoparticle exsolution in double-perovskite materials offers a promising solution by creating electrode materials with stable metallic nanocatalysts strongly bonded to the parent oxide, mitigating high-temperature agglomeration issues. Thus, understanding the dynamic evolution of microstructure and catalytic behavior in such materials is vital for developing high-performing SOC catalysts. This study utilized a multimodal approach to investigate the dynamics of exsolution in Sr<sub>2</sub>FeMo<sub>0.65</sub>Ni<sub>0.35</sub>O<sub>6-δ</sub> (SFM-Ni) and its effect on cell performance. <em>In situ</em> environmental transmission electron microscopy (ETEM), <em>in situ</em> transmission electron microscopy (TEM) coupled with mass spectrometry visualized the formation and the stability of exsolved particles especially at the concave faces of the parent material during chemical conversion of CO from CO<sub>2</sub>. Simultaneously, macro-scale cell experiments coupled with electrochemical impedance spectroscopy, and focused ion beam-scanning electron microscopy (FIB-SEM) tomography, apart from verifying the nanoscale observations, provided crucial insights into the correlation between the exsolution process observed at the micro-scale and the overall cell performance. These findings offers valuable insights into the design and optimization of improved electrode materials for SOCs. Understanding the dynamic behavior of exsolved catalysts would help in enhancing the electrochemical performance at both the nano and macro levels, ultimately advancing the field of sustainable energy technologies.</div></div>","PeriodicalId":395,"journal":{"name":"Nano Today","volume":"61 ","pages":"Article 102649"},"PeriodicalIF":10.9000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1748013225000210","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Solid oxide cells (SOCs) are likely to play crucial role in the green energy transition, but their widespread adoption is hindered by degradation issues, particularly catalyst agglomeration. Nanoparticle exsolution in double-perovskite materials offers a promising solution by creating electrode materials with stable metallic nanocatalysts strongly bonded to the parent oxide, mitigating high-temperature agglomeration issues. Thus, understanding the dynamic evolution of microstructure and catalytic behavior in such materials is vital for developing high-performing SOC catalysts. This study utilized a multimodal approach to investigate the dynamics of exsolution in Sr2FeMo0.65Ni0.35O6-δ (SFM-Ni) and its effect on cell performance. In situ environmental transmission electron microscopy (ETEM), in situ transmission electron microscopy (TEM) coupled with mass spectrometry visualized the formation and the stability of exsolved particles especially at the concave faces of the parent material during chemical conversion of CO from CO2. Simultaneously, macro-scale cell experiments coupled with electrochemical impedance spectroscopy, and focused ion beam-scanning electron microscopy (FIB-SEM) tomography, apart from verifying the nanoscale observations, provided crucial insights into the correlation between the exsolution process observed at the micro-scale and the overall cell performance. These findings offers valuable insights into the design and optimization of improved electrode materials for SOCs. Understanding the dynamic behavior of exsolved catalysts would help in enhancing the electrochemical performance at both the nano and macro levels, ultimately advancing the field of sustainable energy technologies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
原位透射电镜揭示了Sr2FeMo0.65Ni0.35O6-δ的溶出机理和催化过程的研究
固体氧化物电池(soc)可能在绿色能源转型中发挥关键作用,但其广泛采用受到降解问题,特别是催化剂团聚的阻碍。双钙钛矿材料中的纳米颗粒溶出提供了一个很有前途的解决方案,通过创建稳定的金属纳米催化剂与母体氧化物紧密结合的电极材料,减轻了高温团聚问题。因此,了解这些材料的微观结构和催化行为的动态演变对于开发高性能SOC催化剂至关重要。本研究利用多模态方法研究了Sr2FeMo0.65Ni0.35O6-δ (SFM-Ni)的析出动力学及其对电池性能的影响。原位环境透射电子显微镜(ETEM)、原位透射电子显微镜(TEM)和质谱联用技术可以直观地观察到CO - CO2化学转化过程中溶解颗粒的形成和稳定性,特别是在母体材料的凹面处。同时,结合电化学阻抗谱和聚焦离子束扫描电子显微镜(FIB-SEM)断层扫描的宏观细胞实验,除了验证纳米尺度的观察结果外,还为微观尺度上观察到的脱溶过程与整体细胞性能之间的相关性提供了重要的见解。这些发现为改进soc电极材料的设计和优化提供了有价值的见解。了解溶出催化剂的动力学行为有助于在纳米和宏观水平上提高电化学性能,最终推动可持续能源技术领域的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Today
Nano Today 工程技术-材料科学:综合
CiteScore
21.50
自引率
3.40%
发文量
305
审稿时长
40 days
期刊介绍: Nano Today is a journal dedicated to publishing influential and innovative work in the field of nanoscience and technology. It covers a wide range of subject areas including biomaterials, materials chemistry, materials science, chemistry, bioengineering, biochemistry, genetics and molecular biology, engineering, and nanotechnology. The journal considers articles that inform readers about the latest research, breakthroughs, and topical issues in these fields. It provides comprehensive coverage through a mixture of peer-reviewed articles, research news, and information on key developments. Nano Today is abstracted and indexed in Science Citation Index, Ei Compendex, Embase, Scopus, and INSPEC.
期刊最新文献
Biomimetic nanomaterial-based strategies for spinal cord injury repair Manganese in metalloimmunotherapy: From molecular targets to material engineering and translational therapeutics Controlled epitaxy of perovskite van der waals heterostructures enables advanced self-powered broadband photodetectors Nanoengineered living macrophages as ultrasound imaging-trackable cell extinguishers inhibit pyroptosis in atherosclerotic plaque Inflammatory environment-responsive nanomicelles targeting CD44 alleviate allergic asthma by inhibiting the TLR4/MyD88-NFκB pathway
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1