Jingjing Yi , Jiadong Liu , Bo Gao , Longli Bo , Li Cao , Mika Sillanpää
{"title":"The comprehensive review of catalysts for catalytic oxidation of volatile organic compounds","authors":"Jingjing Yi , Jiadong Liu , Bo Gao , Longli Bo , Li Cao , Mika Sillanpää","doi":"10.1016/j.jece.2025.115691","DOIUrl":null,"url":null,"abstract":"<div><div>Volatile organic compounds (VOCs) are an important factor contributing to air pollution and have received significant attention due to their toxicity and severe impact on the environment and human health. Catalytic oxidation technology has been widely recognized as an effective end-of-pipe control method for VOCs, which has been extensively studied in recent years to enhance catalyst activity, stability, and economic benefits. So, this review focuses on summarizing noble metal catalysts, non-noble metal and composite catalysts used in VOCs catalytic oxidation; analyzing factors influencing their catalytic activity and improvement methods; objectively evaluating the catalytic performance and key parameters of these catalysts; discussing the catalytic oxidation mechanism. Based on this comprehensive review, the development routes and strategies of catalysts preparing for VOC catalytic oxidation will be more explicit, while their application scenarios and parameters will be clearer.</div></div>","PeriodicalId":15759,"journal":{"name":"Journal of Environmental Chemical Engineering","volume":"13 2","pages":"Article 115691"},"PeriodicalIF":7.4000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213343725003860","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Volatile organic compounds (VOCs) are an important factor contributing to air pollution and have received significant attention due to their toxicity and severe impact on the environment and human health. Catalytic oxidation technology has been widely recognized as an effective end-of-pipe control method for VOCs, which has been extensively studied in recent years to enhance catalyst activity, stability, and economic benefits. So, this review focuses on summarizing noble metal catalysts, non-noble metal and composite catalysts used in VOCs catalytic oxidation; analyzing factors influencing their catalytic activity and improvement methods; objectively evaluating the catalytic performance and key parameters of these catalysts; discussing the catalytic oxidation mechanism. Based on this comprehensive review, the development routes and strategies of catalysts preparing for VOC catalytic oxidation will be more explicit, while their application scenarios and parameters will be clearer.
期刊介绍:
The Journal of Environmental Chemical Engineering (JECE) serves as a platform for the dissemination of original and innovative research focusing on the advancement of environmentally-friendly, sustainable technologies. JECE emphasizes the transition towards a carbon-neutral circular economy and a self-sufficient bio-based economy. Topics covered include soil, water, wastewater, and air decontamination; pollution monitoring, prevention, and control; advanced analytics, sensors, impact and risk assessment methodologies in environmental chemical engineering; resource recovery (water, nutrients, materials, energy); industrial ecology; valorization of waste streams; waste management (including e-waste); climate-water-energy-food nexus; novel materials for environmental, chemical, and energy applications; sustainability and environmental safety; water digitalization, water data science, and machine learning; process integration and intensification; recent developments in green chemistry for synthesis, catalysis, and energy; and original research on contaminants of emerging concern, persistent chemicals, and priority substances, including microplastics, nanoplastics, nanomaterials, micropollutants, antimicrobial resistance genes, and emerging pathogens (viruses, bacteria, parasites) of environmental significance.