SOD-YOLOv10: Small Object Detection in Remote Sensing Images Based on YOLOv10

Hui Sun;Guangzhen Yao;Sandong Zhu;Long Zhang;Hui Xu;Jun Kong
{"title":"SOD-YOLOv10: Small Object Detection in Remote Sensing Images Based on YOLOv10","authors":"Hui Sun;Guangzhen Yao;Sandong Zhu;Long Zhang;Hui Xu;Jun Kong","doi":"10.1109/LGRS.2025.3534786","DOIUrl":null,"url":null,"abstract":"YOLOv10, known for its efficiency in object detection methods, quickly and accurately detects objects in images. However, when detecting small objects in remote sensing imagery, traditional algorithms often encounter challenges like background noise, missing information, and complex multiobject interactions, which can affect detection performance. To address these issues, we propose an enhanced algorithm for detecting small objects, named SOD-YOLOv10. We design the Multidimensional Information Interaction for the Transformer Backbone (TransBone) Network, which enhances global perception capabilities and effectively integrates both local and global information, thereby improving the detection of small object features. We also propose a feature fusion technology using an attention mechanism, called aggregated attention in a gated feature pyramid network (AA-GFPN). This technology uses an efficient feature aggregation network and re-parameterization techniques to optimize information interaction between feature maps of different scales. Additionally, by incorporating the aggregated attention (AA) mechanism, it accurately identifies essential features of small objects. Moreover, we propose the adaptive focal powerful IoU (AFP-IoU) loss function, which not only prevents excessive expansion of the anchor box area but also significantly accelerates model convergence. To evaluate our method, we conduct thorough tests on the RSOD, NWPU VHR-10, VisDrone2019, and AI-TOD datasets. The findings indicate that our SOD-YOLOv10 model attains 95.90%, 92.46%, 55.61%, and 59.47% for mAP@0.5 and 73.42%, 66.84%, 39.03%, and 42.67% for mAP@0.5:0.95.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10855585/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

YOLOv10, known for its efficiency in object detection methods, quickly and accurately detects objects in images. However, when detecting small objects in remote sensing imagery, traditional algorithms often encounter challenges like background noise, missing information, and complex multiobject interactions, which can affect detection performance. To address these issues, we propose an enhanced algorithm for detecting small objects, named SOD-YOLOv10. We design the Multidimensional Information Interaction for the Transformer Backbone (TransBone) Network, which enhances global perception capabilities and effectively integrates both local and global information, thereby improving the detection of small object features. We also propose a feature fusion technology using an attention mechanism, called aggregated attention in a gated feature pyramid network (AA-GFPN). This technology uses an efficient feature aggregation network and re-parameterization techniques to optimize information interaction between feature maps of different scales. Additionally, by incorporating the aggregated attention (AA) mechanism, it accurately identifies essential features of small objects. Moreover, we propose the adaptive focal powerful IoU (AFP-IoU) loss function, which not only prevents excessive expansion of the anchor box area but also significantly accelerates model convergence. To evaluate our method, we conduct thorough tests on the RSOD, NWPU VHR-10, VisDrone2019, and AI-TOD datasets. The findings indicate that our SOD-YOLOv10 model attains 95.90%, 92.46%, 55.61%, and 59.47% for mAP@0.5 and 73.42%, 66.84%, 39.03%, and 42.67% for mAP@0.5:0.95.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
INVITATION: A Framework for Enhancing UAV Image Semantic Segmentation Accuracy Through Depth Information Fusion Feature Enhancement and Feedback Network for Change Detection in Remote Sensing Images SHAP-Assisted Resilience Enhancement Against Adversarial Perturbations in Optical and SAR Image Classification A Simplified Predictor With Adjustable Compression Ratio Based on CCSDS 123.0-B-2 SOLSTM: Multisource Information Fusion Semantic Segmentation Network Based on SAR-OPT Matching Attention and Long Short-Term Memory Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1