INVITATION: A Framework for Enhancing UAV Image Semantic Segmentation Accuracy Through Depth Information Fusion

Xiaodong Zhang;Wenlin Zhou;Guanzhou Chen;Jiaqi Wang;Qingyuan Yang;Xiaoliang Tan;Tong Wang;Yifei Chen
{"title":"INVITATION: A Framework for Enhancing UAV Image Semantic Segmentation Accuracy Through Depth Information Fusion","authors":"Xiaodong Zhang;Wenlin Zhou;Guanzhou Chen;Jiaqi Wang;Qingyuan Yang;Xiaoliang Tan;Tong Wang;Yifei Chen","doi":"10.1109/LGRS.2025.3534994","DOIUrl":null,"url":null,"abstract":"With the increasing use of uncrewed aerial vehicles (UAVs), improving the accuracy of semantic segmentation is becoming critical. Depth information preserves geometric structure, serving as an invaluable supplement to color-rich UAV imagery. Inspired by this, we proposed a novel framework named INVITATION, which exclusively takes original UAV imagery as input, yet is capable of obtaining complemented depth information and fusing into RGB semantic segmentation models effectively, thereby enhancing UAV semantic segmentation accuracy. Concretely, this framework supports two distinct depth generation approaches: high-precision multiview stereo (MVS) depth reconstruction using multiple views or video sequences via structure from motion (SfM) and monocular depth estimation using individual images. Our empirical evaluations conducted on the UAVid dataset showed that mIoU metric of INVITATION used precise reconstructed depth maps via MVS improved from 66.02% to 70.57%, while used depth predictions from pretrained models reached 69.69%, which supports the effectiveness of extracting and fusing depth information from original imagery in enhancing UAV semantic segmentation. This study explores a novel approach to acquire UAV multimodal information at low data cost, highlights the advantages of incorporating depth information into UAV semantic analysis, and paves the way for further studies on the integration of multimodal UAV information. Our code is available at <uri>https://github.com/CVEO/INVITATION</uri>.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10858079/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the increasing use of uncrewed aerial vehicles (UAVs), improving the accuracy of semantic segmentation is becoming critical. Depth information preserves geometric structure, serving as an invaluable supplement to color-rich UAV imagery. Inspired by this, we proposed a novel framework named INVITATION, which exclusively takes original UAV imagery as input, yet is capable of obtaining complemented depth information and fusing into RGB semantic segmentation models effectively, thereby enhancing UAV semantic segmentation accuracy. Concretely, this framework supports two distinct depth generation approaches: high-precision multiview stereo (MVS) depth reconstruction using multiple views or video sequences via structure from motion (SfM) and monocular depth estimation using individual images. Our empirical evaluations conducted on the UAVid dataset showed that mIoU metric of INVITATION used precise reconstructed depth maps via MVS improved from 66.02% to 70.57%, while used depth predictions from pretrained models reached 69.69%, which supports the effectiveness of extracting and fusing depth information from original imagery in enhancing UAV semantic segmentation. This study explores a novel approach to acquire UAV multimodal information at low data cost, highlights the advantages of incorporating depth information into UAV semantic analysis, and paves the way for further studies on the integration of multimodal UAV information. Our code is available at https://github.com/CVEO/INVITATION.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
INVITATION: A Framework for Enhancing UAV Image Semantic Segmentation Accuracy Through Depth Information Fusion Analysis of the Effect of Clutter Range Migration on Target Detection Performance in a Spaceborne Radar System A High-Resolution Imaging Method of Ionosonde Based on Spatial-Frequency 2-D Spectrum Estimation Technology Feature Enhancement and Feedback Network for Change Detection in Remote Sensing Images SHAP-Assisted Resilience Enhancement Against Adversarial Perturbations in Optical and SAR Image Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1