PipeSFL: A Fine-Grained Parallelization Framework for Split Federated Learning on Heterogeneous Clients

IF 7.7 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Mobile Computing Pub Date : 2024-10-31 DOI:10.1109/TMC.2024.3489642
Yunqi Gao;Bing Hu;Mahdi Boloursaz Mashhadi;Wei Wang;Mehdi Bennis
{"title":"PipeSFL: A Fine-Grained Parallelization Framework for Split Federated Learning on Heterogeneous Clients","authors":"Yunqi Gao;Bing Hu;Mahdi Boloursaz Mashhadi;Wei Wang;Mehdi Bennis","doi":"10.1109/TMC.2024.3489642","DOIUrl":null,"url":null,"abstract":"Split Federated Learning (SFL) improves scalability of Split Learning (SL) by enabling parallel computing of the learning tasks on multiple clients. However, state-of-the-art SFL schemes neglect the effects of heterogeneity in the clients’ computation and communication performance as well as the computation time for the tasks offloaded to the cloud server. In this paper, we propose a fine-grained parallelization framework, called PipeSFL, to accelerate SFL on heterogeneous clients. PipeSFL is based on two key novel ideas. First, we design a server-side priority scheduling mechanism to minimize per-iteration time. Second, we propose a hybrid training mode to reduce per-round time, which employs asynchronous training within rounds and synchronous training between rounds. We theoretically prove the optimality of the proposed priority scheduling mechanism within one round and analyze the total time per round for PipeSFL, SFL and SL. We implement PipeSFL on PyTorch. Extensive experiments on seven 64-client clusters with different heterogeneity demonstrate that at training speed, PipeSFL achieves up to 1.65x and 1.93x speedup compared to EPSL and SFL, respectively. At energy consumption, PipeSFL saves up to 30.8% and 43.4% of the energy consumed within each training round compared to EPSL and SFL, respectively.","PeriodicalId":50389,"journal":{"name":"IEEE Transactions on Mobile Computing","volume":"24 3","pages":"1774-1791"},"PeriodicalIF":7.7000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10740645/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Split Federated Learning (SFL) improves scalability of Split Learning (SL) by enabling parallel computing of the learning tasks on multiple clients. However, state-of-the-art SFL schemes neglect the effects of heterogeneity in the clients’ computation and communication performance as well as the computation time for the tasks offloaded to the cloud server. In this paper, we propose a fine-grained parallelization framework, called PipeSFL, to accelerate SFL on heterogeneous clients. PipeSFL is based on two key novel ideas. First, we design a server-side priority scheduling mechanism to minimize per-iteration time. Second, we propose a hybrid training mode to reduce per-round time, which employs asynchronous training within rounds and synchronous training between rounds. We theoretically prove the optimality of the proposed priority scheduling mechanism within one round and analyze the total time per round for PipeSFL, SFL and SL. We implement PipeSFL on PyTorch. Extensive experiments on seven 64-client clusters with different heterogeneity demonstrate that at training speed, PipeSFL achieves up to 1.65x and 1.93x speedup compared to EPSL and SFL, respectively. At energy consumption, PipeSFL saves up to 30.8% and 43.4% of the energy consumed within each training round compared to EPSL and SFL, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Mobile Computing
IEEE Transactions on Mobile Computing 工程技术-电信学
CiteScore
12.90
自引率
2.50%
发文量
403
审稿时长
6.6 months
期刊介绍: IEEE Transactions on Mobile Computing addresses key technical issues related to various aspects of mobile computing. This includes (a) architectures, (b) support services, (c) algorithm/protocol design and analysis, (d) mobile environments, (e) mobile communication systems, (f) applications, and (g) emerging technologies. Topics of interest span a wide range, covering aspects like mobile networks and hosts, mobility management, multimedia, operating system support, power management, online and mobile environments, security, scalability, reliability, and emerging technologies such as wearable computers, body area networks, and wireless sensor networks. The journal serves as a comprehensive platform for advancements in mobile computing research.
期刊最新文献
2024 Reviewers List Intelligent End-to-End Deterministic Scheduling Across Converged Networks EdgeLLM: Fast On-Device LLM Inference With Speculative Decoding Offloading Game for Mobile Edge Computing With Random Access in IoT Mobile Tile-Based 360$^\circ$∘ Video Multicast With Cybersickness Alleviation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1