{"title":"Security-Sensitive Task Offloading in Integrated Satellite-Terrestrial Networks","authors":"Wenjun Lan;Kongyang Chen;Jiannong Cao;Yikai Li;Ning Li;Qi Chen;Yuvraj Sahni","doi":"10.1109/TMC.2024.3489619","DOIUrl":null,"url":null,"abstract":"With the rapid development of sixth-generation (6G) communication technology, global communication networks are moving towards the goal of comprehensive and seamless coverage. In particular, low earth orbit (LEO) satellites have become a critical component of satellite communication networks. The emergence of LEO satellites has brought about new computational resources known as the <italic>LEO satellite edge</i>, enabling ground users (GU) to offload computing tasks to the resource-rich LEO satellite edge. However, existing LEO satellite computational offloading solutions primarily focus on optimizing system performance, neglecting the potential issue of malicious satellite attacks during task offloading. In this paper, we propose the deployment of LEO satellite edge in an integrated satellite-terrestrial networks (ISTN) structure to support <italic>security-sensitive computing task offloading</i>. We model the task allocation and offloading order problem as a joint optimization problem to minimize task offloading delay, energy consumption, and the number of attacks while satisfying reliability constraints. To achieve this objective, we model the task offloading process as a Markov decision process (MDP) and propose a security-sensitive task offloading strategy optimization algorithm based on proximal policy optimization (PPO). Experimental results demonstrate that our algorithm significantly outperforms other benchmark methods in terms of performance.","PeriodicalId":50389,"journal":{"name":"IEEE Transactions on Mobile Computing","volume":"24 3","pages":"2220-2233"},"PeriodicalIF":7.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10740666/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
With the rapid development of sixth-generation (6G) communication technology, global communication networks are moving towards the goal of comprehensive and seamless coverage. In particular, low earth orbit (LEO) satellites have become a critical component of satellite communication networks. The emergence of LEO satellites has brought about new computational resources known as the LEO satellite edge, enabling ground users (GU) to offload computing tasks to the resource-rich LEO satellite edge. However, existing LEO satellite computational offloading solutions primarily focus on optimizing system performance, neglecting the potential issue of malicious satellite attacks during task offloading. In this paper, we propose the deployment of LEO satellite edge in an integrated satellite-terrestrial networks (ISTN) structure to support security-sensitive computing task offloading. We model the task allocation and offloading order problem as a joint optimization problem to minimize task offloading delay, energy consumption, and the number of attacks while satisfying reliability constraints. To achieve this objective, we model the task offloading process as a Markov decision process (MDP) and propose a security-sensitive task offloading strategy optimization algorithm based on proximal policy optimization (PPO). Experimental results demonstrate that our algorithm significantly outperforms other benchmark methods in terms of performance.
期刊介绍:
IEEE Transactions on Mobile Computing addresses key technical issues related to various aspects of mobile computing. This includes (a) architectures, (b) support services, (c) algorithm/protocol design and analysis, (d) mobile environments, (e) mobile communication systems, (f) applications, and (g) emerging technologies. Topics of interest span a wide range, covering aspects like mobile networks and hosts, mobility management, multimedia, operating system support, power management, online and mobile environments, security, scalability, reliability, and emerging technologies such as wearable computers, body area networks, and wireless sensor networks. The journal serves as a comprehensive platform for advancements in mobile computing research.