Enhancing Accuracy-Privacy Trade-Off in Differentially Private Split Learning

IF 5.3 3区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IEEE Transactions on Emerging Topics in Computational Intelligence Pub Date : 2024-10-31 DOI:10.1109/TETCI.2024.3485723
Ngoc Duy Pham;Khoa T. Phan;Naveen Chilamkurti
{"title":"Enhancing Accuracy-Privacy Trade-Off in Differentially Private Split Learning","authors":"Ngoc Duy Pham;Khoa T. Phan;Naveen Chilamkurti","doi":"10.1109/TETCI.2024.3485723","DOIUrl":null,"url":null,"abstract":"Split learning (SL) aims to protect user data privacy by distributing deep models between the client-server and keeping private data locally. Only processed or ‘smashed’ data can be transmitted from the clients to the server during the SL process. However, recently proposed model inversion attacks can recover original data from smashed data. To enhance privacy protection against such attacks, one strategy is to adopt differential privacy (DP), which involves safeguarding the smashed data at the expense of some accuracy loss. This paper presents the first investigation into the impact on accuracy when training multiple clients in SL with various privacy requirements. Subsequently, we propose an approach that reviews the DP noise distributions of other clients during client training to address the identified accuracy degradation. We also examine the application of DP to the local model of SL to gain insights into the trade-off between accuracy and privacy. Specifically, the findings reveal that introducing noise in the later local layers offers the most favorable balance between accuracy and privacy. Drawing from our insights in the shallower layers, we propose an approach to reduce the size of smashed data to minimize data leakage while maintaining higher accuracy, optimizing the accuracy-privacy trade-off. Additionally, smashed data of a smaller size reduces communication overhead on the client side, mitigating one of the notable drawbacks of SL. Intensive experiments on various datasets demonstrate that our proposed approaches provide an optimal trade-off for incorporating DP into SL, ultimately enhancing the training accuracy for multi-client SL with varying privacy requirements.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":"9 1","pages":"988-1000"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10740400/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Split learning (SL) aims to protect user data privacy by distributing deep models between the client-server and keeping private data locally. Only processed or ‘smashed’ data can be transmitted from the clients to the server during the SL process. However, recently proposed model inversion attacks can recover original data from smashed data. To enhance privacy protection against such attacks, one strategy is to adopt differential privacy (DP), which involves safeguarding the smashed data at the expense of some accuracy loss. This paper presents the first investigation into the impact on accuracy when training multiple clients in SL with various privacy requirements. Subsequently, we propose an approach that reviews the DP noise distributions of other clients during client training to address the identified accuracy degradation. We also examine the application of DP to the local model of SL to gain insights into the trade-off between accuracy and privacy. Specifically, the findings reveal that introducing noise in the later local layers offers the most favorable balance between accuracy and privacy. Drawing from our insights in the shallower layers, we propose an approach to reduce the size of smashed data to minimize data leakage while maintaining higher accuracy, optimizing the accuracy-privacy trade-off. Additionally, smashed data of a smaller size reduces communication overhead on the client side, mitigating one of the notable drawbacks of SL. Intensive experiments on various datasets demonstrate that our proposed approaches provide an optimal trade-off for incorporating DP into SL, ultimately enhancing the training accuracy for multi-client SL with varying privacy requirements.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.30
自引率
7.50%
发文量
147
期刊介绍: The IEEE Transactions on Emerging Topics in Computational Intelligence (TETCI) publishes original articles on emerging aspects of computational intelligence, including theory, applications, and surveys. TETCI is an electronics only publication. TETCI publishes six issues per year. Authors are encouraged to submit manuscripts in any emerging topic in computational intelligence, especially nature-inspired computing topics not covered by other IEEE Computational Intelligence Society journals. A few such illustrative examples are glial cell networks, computational neuroscience, Brain Computer Interface, ambient intelligence, non-fuzzy computing with words, artificial life, cultural learning, artificial endocrine networks, social reasoning, artificial hormone networks, computational intelligence for the IoT and Smart-X technologies.
期刊最新文献
Table of Contents IEEE Transactions on Emerging Topics in Computational Intelligence Publication Information IEEE Computational Intelligence Society Information IEEE Transactions on Emerging Topics in Computational Intelligence Information for Authors ESAI: Efficient Split Artificial Intelligence via Early Exiting Using Neural Architecture Search
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1