Splashing correlation for single droplets impacting liquid films under non-isothermal conditions

IF 2.3 3区 工程技术 Q2 ENGINEERING, MECHANICAL Experiments in Fluids Pub Date : 2025-02-07 DOI:10.1007/s00348-024-03942-6
Daniel Vasconcelos, Jorge Barata, André Silva
{"title":"Splashing correlation for single droplets impacting liquid films under non-isothermal conditions","authors":"Daniel Vasconcelos,&nbsp;Jorge Barata,&nbsp;André Silva","doi":"10.1007/s00348-024-03942-6","DOIUrl":null,"url":null,"abstract":"<div><p>The droplet impact phenomenon onto liquid films is predominant in a variety of modern industrial applications, including internal combustion engines and cooling of electronic devices. These are characterised by heat and mass transfer processes, such as evaporation, condensation and boiling. However, studies regarding droplets and liquid films under non-isothermal conditions are scarce in the literature and do not explore temperature-dependent phenomena. Due to this, the main objective of this work is to evaluate the influence of temperature on the splashing occurrence of single droplets impinging onto liquid films under the presence of a heat flux. The crown evolution is evaluated qualitatively to provide insight regarding breakup mechanisms. Water, n-heptane and n-decane are the fluids considered for the current study, as these provide a wide range of thermophysical properties and saturation temperatures. The splashing dynamics are evaluated by varying the droplet impact velocity and dimensionless temperature of the liquid film. Qualitative results show that an increase in the liquid film temperature leads to the transition from spreading to splashing, which is less evident for fuels in comparison with water. For water and n-heptane, the formation of cusps on the crown rim is promoted, which is associated with ligament breakup. For n-decane, the crown rims are relatively homogeneous in terms of shape and size, whereas the atomisation process varies a function of the liquid film temperature. Visually, the secondary droplets exhibit a greater size in comparison with lower temperatures. Transitional regimes display some irregularities, such as splashing suppression/reduction, which require further attention. In terms of splashing correlation, the authors propose to develop a non-splash/splash boundary for both iso- and non-isothermal conditions. Results show that the splashing threshold is dependent on the thermophysical properties and the dimensionless temperature of the liquid film.</p></div>","PeriodicalId":554,"journal":{"name":"Experiments in Fluids","volume":"66 3","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00348-024-03942-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experiments in Fluids","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00348-024-03942-6","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The droplet impact phenomenon onto liquid films is predominant in a variety of modern industrial applications, including internal combustion engines and cooling of electronic devices. These are characterised by heat and mass transfer processes, such as evaporation, condensation and boiling. However, studies regarding droplets and liquid films under non-isothermal conditions are scarce in the literature and do not explore temperature-dependent phenomena. Due to this, the main objective of this work is to evaluate the influence of temperature on the splashing occurrence of single droplets impinging onto liquid films under the presence of a heat flux. The crown evolution is evaluated qualitatively to provide insight regarding breakup mechanisms. Water, n-heptane and n-decane are the fluids considered for the current study, as these provide a wide range of thermophysical properties and saturation temperatures. The splashing dynamics are evaluated by varying the droplet impact velocity and dimensionless temperature of the liquid film. Qualitative results show that an increase in the liquid film temperature leads to the transition from spreading to splashing, which is less evident for fuels in comparison with water. For water and n-heptane, the formation of cusps on the crown rim is promoted, which is associated with ligament breakup. For n-decane, the crown rims are relatively homogeneous in terms of shape and size, whereas the atomisation process varies a function of the liquid film temperature. Visually, the secondary droplets exhibit a greater size in comparison with lower temperatures. Transitional regimes display some irregularities, such as splashing suppression/reduction, which require further attention. In terms of splashing correlation, the authors propose to develop a non-splash/splash boundary for both iso- and non-isothermal conditions. Results show that the splashing threshold is dependent on the thermophysical properties and the dimensionless temperature of the liquid film.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Experiments in Fluids
Experiments in Fluids 工程技术-工程:机械
CiteScore
5.10
自引率
12.50%
发文量
157
审稿时长
3.8 months
期刊介绍: Experiments in Fluids examines the advancement, extension, and improvement of new techniques of flow measurement. The journal also publishes contributions that employ existing experimental techniques to gain an understanding of the underlying flow physics in the areas of turbulence, aerodynamics, hydrodynamics, convective heat transfer, combustion, turbomachinery, multi-phase flows, and chemical, biological and geological flows. In addition, readers will find papers that report on investigations combining experimental and analytical/numerical approaches.
期刊最新文献
Background-oriented schlieren with image processing based on phase-shifting profilometry Aerodynamic performance and mechanism for a flexible membrane wing encountering a harmonic transverse gust Demosaic-free color detection for particle images Splashing correlation for single droplets impacting liquid films under non-isothermal conditions Modelling the response of an ice disc to radial water flow in the context of sea ice thickening
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1