{"title":"Interaction of microalgae, nitrogen and arsenic in a water environment co-polluted by nitrogen and arsenic: current knowledge and future perspectives","authors":"Youwen Li, Xinxin Zhao, Zhaoqi Zhong, Fanfan Ju, Hui Liu, Ning Lin, Xianghao Zha","doi":"10.1007/s10452-024-10165-8","DOIUrl":null,"url":null,"abstract":"<div><p>Nitrogen (N) and arsenic (As) pollution in water environment seriously threaten human life and health. In order to improve the efficiency of sustainable remediation of N and As co-polluted water environment, the migration and transformation of microalgae, N, and As and their interaction were studied. Based on the bibliometric analysis and the research status of remediation for N and As co-polluted water environment, this study focused on the oxidation, reduction, methylation, and absorption of As by microalgae, analyzed the effects of N sources on the physiological and biochemical functions of microalgae, extracellular secretions, and cell growth, and revealed the mechanism of As enrichment by microalgae in the presence of N sources. It was found that the physiological and biochemical characteristics of microalgae showed complex changes under the condition of coexistence of N and As. N sources affect the metabolic pathways and key enzyme activities of microalgae, and affect the absorption and transformation of As. The extracellular secretions of microalgae may also change, and the organic acids and polysaccharides contained in them can be complexed with As, affecting the migration and bioavailability of As. The concentration of N and As and the type of N source affect the growth rate and cell morphology of microalgae. Under the appropriate concentration ratio of N and As, microalgae can adjust their physiological state to achieve the balance between growth and pollutant removal. Clarifying the physiological and biochemical change mechanism of microalgae under the coexistence of N and As and optimizing their ability to remove pollutants are the key to future research. This study can provide new ideas and references for the simultaneous purification of pollutants such as N and As in water environment.</p></div>","PeriodicalId":8262,"journal":{"name":"Aquatic Ecology","volume":"59 1","pages":"323 - 337"},"PeriodicalIF":1.7000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Ecology","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10452-024-10165-8","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Nitrogen (N) and arsenic (As) pollution in water environment seriously threaten human life and health. In order to improve the efficiency of sustainable remediation of N and As co-polluted water environment, the migration and transformation of microalgae, N, and As and their interaction were studied. Based on the bibliometric analysis and the research status of remediation for N and As co-polluted water environment, this study focused on the oxidation, reduction, methylation, and absorption of As by microalgae, analyzed the effects of N sources on the physiological and biochemical functions of microalgae, extracellular secretions, and cell growth, and revealed the mechanism of As enrichment by microalgae in the presence of N sources. It was found that the physiological and biochemical characteristics of microalgae showed complex changes under the condition of coexistence of N and As. N sources affect the metabolic pathways and key enzyme activities of microalgae, and affect the absorption and transformation of As. The extracellular secretions of microalgae may also change, and the organic acids and polysaccharides contained in them can be complexed with As, affecting the migration and bioavailability of As. The concentration of N and As and the type of N source affect the growth rate and cell morphology of microalgae. Under the appropriate concentration ratio of N and As, microalgae can adjust their physiological state to achieve the balance between growth and pollutant removal. Clarifying the physiological and biochemical change mechanism of microalgae under the coexistence of N and As and optimizing their ability to remove pollutants are the key to future research. This study can provide new ideas and references for the simultaneous purification of pollutants such as N and As in water environment.
期刊介绍:
Aquatic Ecology publishes timely, peer-reviewed original papers relating to the ecology of fresh, brackish, estuarine and marine environments. Papers on fundamental and applied novel research in both the field and the laboratory, including descriptive or experimental studies, will be included in the journal. Preference will be given to studies that address timely and current topics and are integrative and critical in approach. We discourage papers that describe presence and abundance of aquatic biota in local habitats as well as papers that are pure systematic.
The journal provides a forum for the aquatic ecologist - limnologist and oceanologist alike- to discuss ecological issues related to processes and structures at different integration levels from individuals to populations, to communities and entire ecosystems.