Toxicity of polyethylene microplastics combined with medroxyprogesterone on photosynthetic pigments of Lemna minor

IF 1.7 4区 环境科学与生态学 Q3 ECOLOGY Aquatic Ecology Pub Date : 2024-12-14 DOI:10.1007/s10452-024-10164-9
Thaís Fabiane Gomes Martins, Bárbara Rani-Borges, Lucas Gonçalves Queiroz, Karen Ferreira de Souza, Marcelo Pompêo
{"title":"Toxicity of polyethylene microplastics combined with medroxyprogesterone on photosynthetic pigments of Lemna minor","authors":"Thaís Fabiane Gomes Martins,&nbsp;Bárbara Rani-Borges,&nbsp;Lucas Gonçalves Queiroz,&nbsp;Karen Ferreira de Souza,&nbsp;Marcelo Pompêo","doi":"10.1007/s10452-024-10164-9","DOIUrl":null,"url":null,"abstract":"<div><p>Similar to microplastics (MPs), pharmaceuticals are recognized as emerging contaminants. In the environment, macrophytes experience simultaneous exposure to a mixture of these compounds. This study aimed to assess the impact of low-density polyethylene MPs (40–190 µm) and medroxyprogesterone acetate (DMPA; synthetic hormone) to determine the toxic effects on <i>Lemna minor</i>. A chronic assay of 168 h was conducted to expose macrophytes to two concentrations of each pollutant: MPs at 0.5 mg L<sup>−1</sup> and 1.0 mg L<sup>−1</sup>, and DMPA at 26 ng L<sup>−1</sup> and 26 µg L<sup>−1</sup>. The concentrations were evaluated both individually and in specific combinations, between both concentrations of MPs and DMPA, resulting in eight treatments, in addition to a negative control containing only plants and culture medium. The exposure effects were analyzed through chlorophyll <i>a</i> and <i>b</i> levels, carotenoids, frond number, and adhesion of MPs. MPs and DMPA did not show a significant impact on the specific growth rate or frond number of the macrophyte. Nonetheless, a deleterious effect on chlorophyll <i>b</i> content was observed in all treatments, in relation to the control. Combinations of MPs and DMPA significantly reduced these pigments, indicating stress caused by exposure to the drug. The number of adhered particles was higher on the roots compared to the fronds, suggesting specific adhesion of MPs to <i>L. minor</i>. This phenomenon underscores the potential role of plants as a pathway for the entry of MPs into food chains, since aquatic plants act as sinks for MPs in the environment. On the other hand, the substantial interaction of MPs with plants suggests a potential application in phytostabilization and eventually for the removal of MPs from the environment. Based on our findings, it is plausible to assert that vascular plants play a substantial role in the dynamics and fate of MPs within aquatic ecosystems.</p></div>","PeriodicalId":8262,"journal":{"name":"Aquatic Ecology","volume":"59 1","pages":"307 - 322"},"PeriodicalIF":1.7000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Ecology","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10452-024-10164-9","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Similar to microplastics (MPs), pharmaceuticals are recognized as emerging contaminants. In the environment, macrophytes experience simultaneous exposure to a mixture of these compounds. This study aimed to assess the impact of low-density polyethylene MPs (40–190 µm) and medroxyprogesterone acetate (DMPA; synthetic hormone) to determine the toxic effects on Lemna minor. A chronic assay of 168 h was conducted to expose macrophytes to two concentrations of each pollutant: MPs at 0.5 mg L−1 and 1.0 mg L−1, and DMPA at 26 ng L−1 and 26 µg L−1. The concentrations were evaluated both individually and in specific combinations, between both concentrations of MPs and DMPA, resulting in eight treatments, in addition to a negative control containing only plants and culture medium. The exposure effects were analyzed through chlorophyll a and b levels, carotenoids, frond number, and adhesion of MPs. MPs and DMPA did not show a significant impact on the specific growth rate or frond number of the macrophyte. Nonetheless, a deleterious effect on chlorophyll b content was observed in all treatments, in relation to the control. Combinations of MPs and DMPA significantly reduced these pigments, indicating stress caused by exposure to the drug. The number of adhered particles was higher on the roots compared to the fronds, suggesting specific adhesion of MPs to L. minor. This phenomenon underscores the potential role of plants as a pathway for the entry of MPs into food chains, since aquatic plants act as sinks for MPs in the environment. On the other hand, the substantial interaction of MPs with plants suggests a potential application in phytostabilization and eventually for the removal of MPs from the environment. Based on our findings, it is plausible to assert that vascular plants play a substantial role in the dynamics and fate of MPs within aquatic ecosystems.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Aquatic Ecology
Aquatic Ecology 环境科学-海洋与淡水生物学
CiteScore
3.90
自引率
0.00%
发文量
68
审稿时长
3 months
期刊介绍: Aquatic Ecology publishes timely, peer-reviewed original papers relating to the ecology of fresh, brackish, estuarine and marine environments. Papers on fundamental and applied novel research in both the field and the laboratory, including descriptive or experimental studies, will be included in the journal. Preference will be given to studies that address timely and current topics and are integrative and critical in approach. We discourage papers that describe presence and abundance of aquatic biota in local habitats as well as papers that are pure systematic. The journal provides a forum for the aquatic ecologist - limnologist and oceanologist alike- to discuss ecological issues related to processes and structures at different integration levels from individuals to populations, to communities and entire ecosystems.
期刊最新文献
Macroinvertebrate colonisation of macroplastic litter in minimally disturbed river sites, Eastern Cape, South Africa Aquatic biodiversity on Reunion Island: responses of biological communities to environmental and anthropogenic pressures using environmental DNA Trophic ecology of a small characid reflects the degradation of a basin after the rupture of an ore tailings dam Prevalence and parasitic load in Emerita analoga “Muymuy” on the beaches of Mollendo (Arequipa), Southern Peru Toxicity of polyethylene microplastics combined with medroxyprogesterone on photosynthetic pigments of Lemna minor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1