{"title":"Assessment of bacteria-based self-healing concrete through experimental investigations — a sustainable approach","authors":"Akula Vishal, Akhilesh Chepuri, N. Chandana","doi":"10.1186/s40712-025-00215-w","DOIUrl":null,"url":null,"abstract":"<div><p>This study aims to evaluate the destructive and non-destructive strength parameters of bacterial concrete with different grades (M20, M25, M30) and cell counts (10^5 and 10^6 cells/ml) using <i>Bacillus subtilis</i>. Additionally, cost analysis and cost–benefit comparisons were conducted for each mix. The effectiveness of <i>B. subtilis</i> in resisting high temperatures was also examined. Findings indicate a 25–40% increase in strength parameters in bacterial concrete compared to conventional concrete. Bacterial mixes consistently showed velocities above 4.45 km/s, indicating excellent quality, surpassing conventional concrete. Notably, bacteria with a cell count of 10^5 cells/ml exhibited greater strength than 10^6 cells/ml across all grades. Cantabro loss tests revealed a 15–25% reduction in wear and tear for bacterial concrete. The bacterial specimens also showed significantly lower strength loss at higher temperatures. This study underscores the potential of bacterial-based self-healing concrete for specific construction applications, offering high temperature resistance, increased strength, and reduced wear and tear.</p></div>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":"20 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-025-00215-w","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical and Materials Engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s40712-025-00215-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study aims to evaluate the destructive and non-destructive strength parameters of bacterial concrete with different grades (M20, M25, M30) and cell counts (10^5 and 10^6 cells/ml) using Bacillus subtilis. Additionally, cost analysis and cost–benefit comparisons were conducted for each mix. The effectiveness of B. subtilis in resisting high temperatures was also examined. Findings indicate a 25–40% increase in strength parameters in bacterial concrete compared to conventional concrete. Bacterial mixes consistently showed velocities above 4.45 km/s, indicating excellent quality, surpassing conventional concrete. Notably, bacteria with a cell count of 10^5 cells/ml exhibited greater strength than 10^6 cells/ml across all grades. Cantabro loss tests revealed a 15–25% reduction in wear and tear for bacterial concrete. The bacterial specimens also showed significantly lower strength loss at higher temperatures. This study underscores the potential of bacterial-based self-healing concrete for specific construction applications, offering high temperature resistance, increased strength, and reduced wear and tear.