State-of-the-art on impact and explosion behaviour of concrete structures: report of RILEM TC 288-IEC

IF 3.9 3区 工程技术 Q2 CONSTRUCTION & BUILDING TECHNOLOGY Materials and Structures Pub Date : 2025-02-07 DOI:10.1617/s11527-024-02557-x
Ezio Cadoni, Alejandro Pérez Caldentey, Matteo Colombo, Avraham N. Dancygier, Marco di Prisco, Hezi Grisaro, Paolo Martinelli, Josko Ožbolt, Małgorzata Pająk, Jaap Weerheijm
{"title":"State-of-the-art on impact and explosion behaviour of concrete structures: report of RILEM TC 288-IEC","authors":"Ezio Cadoni,&nbsp;Alejandro Pérez Caldentey,&nbsp;Matteo Colombo,&nbsp;Avraham N. Dancygier,&nbsp;Marco di Prisco,&nbsp;Hezi Grisaro,&nbsp;Paolo Martinelli,&nbsp;Josko Ožbolt,&nbsp;Małgorzata Pająk,&nbsp;Jaap Weerheijm","doi":"10.1617/s11527-024-02557-x","DOIUrl":null,"url":null,"abstract":"<div><p>Extreme loads can arise from accidents such as vehicle collisions or airplane crashes, as well as deliberate acts of terrorism or military attacks involving blasts and fragmentation. Blast overpressure can also occur accidentally, for example, from explosions of hazardous materials such as gas. Distinguishing between accidental and deliberate loads is crucial for designing appropriate protection measures. The repercussions of extreme loading events can be devastating, leading to injuries, loss of life, economic setbacks, and significant social disruption. These consequences result not only from the direct effects of impacts or explosions, but also from secondary factors such as structural collapse, which is particularly concerning due to its potential for widespread devastation and substantial losses. Efforts to enhance the protection of concrete structures have focused on understanding the properties of construction materials and how structures respond to impact and blast loads. This document presents a comprehensive overview of RILEM TC 288-IEC, aiming to provide essential guidance for designing concrete structures to withstand extreme dynamic loads. This emphasizes the importance of a thorough understanding and accurate modelling of loading scenarios and material behaviour. By implementing the strategies outlined in this document, engineers can enhance the safety and resilience of structures facing such challenges.</p></div>","PeriodicalId":691,"journal":{"name":"Materials and Structures","volume":"58 2","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1617/s11527-024-02557-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials and Structures","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1617/s11527-024-02557-x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Extreme loads can arise from accidents such as vehicle collisions or airplane crashes, as well as deliberate acts of terrorism or military attacks involving blasts and fragmentation. Blast overpressure can also occur accidentally, for example, from explosions of hazardous materials such as gas. Distinguishing between accidental and deliberate loads is crucial for designing appropriate protection measures. The repercussions of extreme loading events can be devastating, leading to injuries, loss of life, economic setbacks, and significant social disruption. These consequences result not only from the direct effects of impacts or explosions, but also from secondary factors such as structural collapse, which is particularly concerning due to its potential for widespread devastation and substantial losses. Efforts to enhance the protection of concrete structures have focused on understanding the properties of construction materials and how structures respond to impact and blast loads. This document presents a comprehensive overview of RILEM TC 288-IEC, aiming to provide essential guidance for designing concrete structures to withstand extreme dynamic loads. This emphasizes the importance of a thorough understanding and accurate modelling of loading scenarios and material behaviour. By implementing the strategies outlined in this document, engineers can enhance the safety and resilience of structures facing such challenges.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
混凝土结构冲击和爆炸性能的最新研究进展:RILEM TC 288-IEC报告
极端载荷可能来自车辆碰撞或飞机坠毁等事故,以及涉及爆炸和碎片的蓄意恐怖主义行为或军事袭击。爆炸超压也可能意外发生,例如,气体等危险物质的爆炸。区分意外载荷和故意载荷对于设计适当的保护措施至关重要。极端负荷事件的影响可能是毁灭性的,导致伤害、生命损失、经济挫折和重大的社会混乱。这些后果不仅来自撞击或爆炸的直接影响,而且还来自诸如结构倒塌等次要因素,由于其可能造成广泛破坏和重大损失,这一点特别令人担忧。加强混凝土结构保护的努力集中在了解建筑材料的特性以及结构对冲击和爆炸载荷的反应。本文件介绍了RILEM TC 288-IEC的全面概述,旨在为设计承受极端动荷载的混凝土结构提供基本指导。这强调了对加载场景和材料行为进行全面理解和准确建模的重要性。通过实施本文件中概述的策略,工程师可以提高面临此类挑战的结构的安全性和弹性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials and Structures
Materials and Structures 工程技术-材料科学:综合
CiteScore
6.40
自引率
7.90%
发文量
222
审稿时长
5.9 months
期刊介绍: Materials and Structures, the flagship publication of the International Union of Laboratories and Experts in Construction Materials, Systems and Structures (RILEM), provides a unique international and interdisciplinary forum for new research findings on the performance of construction materials. A leader in cutting-edge research, the journal is dedicated to the publication of high quality papers examining the fundamental properties of building materials, their characterization and processing techniques, modeling, standardization of test methods, and the application of research results in building and civil engineering. Materials and Structures also publishes comprehensive reports prepared by the RILEM’s technical committees.
期刊最新文献
Textile-Reinforced Mortar (TRM) for retrofitting masonry structures: advantages, challenges and future potential Rethinking unfired clay based materials through modification with natural polysaccharides for sustainable building solutions Multi-scale characterization of aging-induced evolution in physicochemical properties and adhesion behavior at asphalt-aggregate interfaces Study the segregation of fresh self-compacting concrete via coupling smoothed particle hydrodynamics and discrete element method Analytical prediction and experimental validation of wet shotcrete pumping using various rheological models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1