State-of-the-art on impact and explosion behaviour of concrete structures: report of RILEM TC 288-IEC

IF 3.4 3区 工程技术 Q2 CONSTRUCTION & BUILDING TECHNOLOGY Materials and Structures Pub Date : 2025-02-07 DOI:10.1617/s11527-024-02557-x
Ezio Cadoni, Alejandro Pérez Caldentey, Matteo Colombo, Avraham N. Dancygier, Marco di Prisco, Hezi Grisaro, Paolo Martinelli, Josko Ožbolt, Małgorzata Pająk, Jaap Weerheijm
{"title":"State-of-the-art on impact and explosion behaviour of concrete structures: report of RILEM TC 288-IEC","authors":"Ezio Cadoni,&nbsp;Alejandro Pérez Caldentey,&nbsp;Matteo Colombo,&nbsp;Avraham N. Dancygier,&nbsp;Marco di Prisco,&nbsp;Hezi Grisaro,&nbsp;Paolo Martinelli,&nbsp;Josko Ožbolt,&nbsp;Małgorzata Pająk,&nbsp;Jaap Weerheijm","doi":"10.1617/s11527-024-02557-x","DOIUrl":null,"url":null,"abstract":"<div><p>Extreme loads can arise from accidents such as vehicle collisions or airplane crashes, as well as deliberate acts of terrorism or military attacks involving blasts and fragmentation. Blast overpressure can also occur accidentally, for example, from explosions of hazardous materials such as gas. Distinguishing between accidental and deliberate loads is crucial for designing appropriate protection measures. The repercussions of extreme loading events can be devastating, leading to injuries, loss of life, economic setbacks, and significant social disruption. These consequences result not only from the direct effects of impacts or explosions, but also from secondary factors such as structural collapse, which is particularly concerning due to its potential for widespread devastation and substantial losses. Efforts to enhance the protection of concrete structures have focused on understanding the properties of construction materials and how structures respond to impact and blast loads. This document presents a comprehensive overview of RILEM TC 288-IEC, aiming to provide essential guidance for designing concrete structures to withstand extreme dynamic loads. This emphasizes the importance of a thorough understanding and accurate modelling of loading scenarios and material behaviour. By implementing the strategies outlined in this document, engineers can enhance the safety and resilience of structures facing such challenges.</p></div>","PeriodicalId":691,"journal":{"name":"Materials and Structures","volume":"58 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1617/s11527-024-02557-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials and Structures","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1617/s11527-024-02557-x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Extreme loads can arise from accidents such as vehicle collisions or airplane crashes, as well as deliberate acts of terrorism or military attacks involving blasts and fragmentation. Blast overpressure can also occur accidentally, for example, from explosions of hazardous materials such as gas. Distinguishing between accidental and deliberate loads is crucial for designing appropriate protection measures. The repercussions of extreme loading events can be devastating, leading to injuries, loss of life, economic setbacks, and significant social disruption. These consequences result not only from the direct effects of impacts or explosions, but also from secondary factors such as structural collapse, which is particularly concerning due to its potential for widespread devastation and substantial losses. Efforts to enhance the protection of concrete structures have focused on understanding the properties of construction materials and how structures respond to impact and blast loads. This document presents a comprehensive overview of RILEM TC 288-IEC, aiming to provide essential guidance for designing concrete structures to withstand extreme dynamic loads. This emphasizes the importance of a thorough understanding and accurate modelling of loading scenarios and material behaviour. By implementing the strategies outlined in this document, engineers can enhance the safety and resilience of structures facing such challenges.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials and Structures
Materials and Structures 工程技术-材料科学:综合
CiteScore
6.40
自引率
7.90%
发文量
222
审稿时长
5.9 months
期刊介绍: Materials and Structures, the flagship publication of the International Union of Laboratories and Experts in Construction Materials, Systems and Structures (RILEM), provides a unique international and interdisciplinary forum for new research findings on the performance of construction materials. A leader in cutting-edge research, the journal is dedicated to the publication of high quality papers examining the fundamental properties of building materials, their characterization and processing techniques, modeling, standardization of test methods, and the application of research results in building and civil engineering. Materials and Structures also publishes comprehensive reports prepared by the RILEM’s technical committees.
期刊最新文献
Heat and mass transfer in heated concrete: evaluation and validation of five numerical models Characterization of physicochemical composition of asphalt/aggregate and multi-scale analysis of interfacial adhesion behavior How shearing affects air dissolution in fresh cement pastes under pressure State-of-the-art on impact and explosion behaviour of concrete structures: report of RILEM TC 288-IEC Validation of the linear amplitude sweep as accelerated fatigue protocol for damage resistance estimation of asphalt binder
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1