Honghao Chen, Mi Yan, Xiaoping Cai, Yongqin Zheng, Guoyuan Li, Kai Gao, Wei Wang, Jianwei Huang, Yingyi Xu, Zhuorong Zhang
{"title":"Identification of IFI27 involvement in the progression of neuroblastoma through bioinformatics analysis and experimental assays","authors":"Honghao Chen, Mi Yan, Xiaoping Cai, Yongqin Zheng, Guoyuan Li, Kai Gao, Wei Wang, Jianwei Huang, Yingyi Xu, Zhuorong Zhang","doi":"10.1007/s10735-024-10346-7","DOIUrl":null,"url":null,"abstract":"<div><p>Neuroblastoma (NB) is a prevalent extracranial malignant neuroendocrine tumor in children, originating from the sympathetic nervous system. This study aims to investigate new therapeutic targets for NB. The differentially expressed genes were screened by analyzing the GSE35133 and GSE90689 datasets. Hub genes were identified by constructing a protein–protein interaction network. The diagnostic value of the hub genes was assessed through the analysis of receiver operating characteristic (ROC) curves and the expression, prognosis, and immune infiltration of IFI27 in pan-cancer were analyzed on the online website Sangerbox. The hub gene expression levels were validated by performing real-time reverse transcriptase-polymerase chain reaction. The functions of IFI27 in NB were investigated by Cell Counting Kit-8, 5-ethynyl-2'-deoxyuridine, wound healing, and Transwell assays. Six candidate genes (IFI27, TNFSF10, IFI44, DDX58, HIST1H1C, and HIST1H1E) were identified as potential diagnostic biomarkers for NB. The expression levels of IFI27, TNFSF10, IFI44, and DDX58 were significantly decreased, while HIST1H1C and HIST1H1E were elevated. Notably, IFI27 displayed correlations with prognosis and immune infiltration in multiple tumors. In vitro, functional assays demonstrated that the knockdown of IFI27 promoted the proliferation, migration, and invasion of U251 cells. Conversely, in SK-N-AS cells, IFI27 overexpression inhibited cell proliferation, migration, and invasion. IFI27 was lowly expressed in NB and participated in the progression of NB, which provides a new insight into the pathogenic mechanism and novel therapeutic strategy for NB.</p></div>","PeriodicalId":650,"journal":{"name":"Journal of Molecular Histology","volume":"56 2","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Histology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10735-024-10346-7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Neuroblastoma (NB) is a prevalent extracranial malignant neuroendocrine tumor in children, originating from the sympathetic nervous system. This study aims to investigate new therapeutic targets for NB. The differentially expressed genes were screened by analyzing the GSE35133 and GSE90689 datasets. Hub genes were identified by constructing a protein–protein interaction network. The diagnostic value of the hub genes was assessed through the analysis of receiver operating characteristic (ROC) curves and the expression, prognosis, and immune infiltration of IFI27 in pan-cancer were analyzed on the online website Sangerbox. The hub gene expression levels were validated by performing real-time reverse transcriptase-polymerase chain reaction. The functions of IFI27 in NB were investigated by Cell Counting Kit-8, 5-ethynyl-2'-deoxyuridine, wound healing, and Transwell assays. Six candidate genes (IFI27, TNFSF10, IFI44, DDX58, HIST1H1C, and HIST1H1E) were identified as potential diagnostic biomarkers for NB. The expression levels of IFI27, TNFSF10, IFI44, and DDX58 were significantly decreased, while HIST1H1C and HIST1H1E were elevated. Notably, IFI27 displayed correlations with prognosis and immune infiltration in multiple tumors. In vitro, functional assays demonstrated that the knockdown of IFI27 promoted the proliferation, migration, and invasion of U251 cells. Conversely, in SK-N-AS cells, IFI27 overexpression inhibited cell proliferation, migration, and invasion. IFI27 was lowly expressed in NB and participated in the progression of NB, which provides a new insight into the pathogenic mechanism and novel therapeutic strategy for NB.
期刊介绍:
The Journal of Molecular Histology publishes results of original research on the localization and expression of molecules in animal cells, tissues and organs. Coverage includes studies describing novel cellular or ultrastructural distributions of molecules which provide insight into biochemical or physiological function, development, histologic structure and disease processes.
Major research themes of particular interest include:
- Cell-Cell and Cell-Matrix Interactions;
- Connective Tissues;
- Development and Disease;
- Neuroscience.
Please note that the Journal of Molecular Histology does not consider manuscripts dealing with the application of immunological or other probes on non-standard laboratory animal models unless the results are clearly of significant and general biological importance.
The Journal of Molecular Histology publishes full-length original research papers, review articles, short communications and letters to the editors. All manuscripts are typically reviewed by two independent referees. The Journal of Molecular Histology is a continuation of The Histochemical Journal.