{"title":"Impacts of Compression on the Ground and Low-Lying Excited Doublet States of Plasma-Embedded Lithium Atom","authors":"Salah Doma, Gamal Roston, Mostafa Ahmed","doi":"10.1007/s00601-025-01981-1","DOIUrl":null,"url":null,"abstract":"<div><p>The variational Monte Carlo method is employed to conduct a comprehensive investigation of the compressed ground and excited states of plasma-embedded lithium atom within impenetrable spherical boxes of varying radii. The study focuses on the low-lying excited doublet states 1<span>\\(s^{{2}}\\)</span><i>ns</i>, 1<span>\\(s^{{2}}n\\)</span>p, and 1<span>\\(s^{{2}}n\\)</span>d, utilizing plasma potentials such as the screened Coulomb (SCP), exponential cosine screened Coulomb (ECSCP), and Hulthén potentials. Energy eigenvalues are determined using appropriate trial wave functions, which account for electron–electron repulsion and spin parts to adhere to the Pauli Exclusion Principle. Moreover, two factors related to the wave function of the compressed system and ECSCP model are considered. The results reveal an intriguing relative ordering for the lithium atom using the three plasma models, with many of the findings being significant contributions yet to be explored.</p></div>","PeriodicalId":556,"journal":{"name":"Few-Body Systems","volume":"66 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00601-025-01981-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Few-Body Systems","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00601-025-01981-1","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The variational Monte Carlo method is employed to conduct a comprehensive investigation of the compressed ground and excited states of plasma-embedded lithium atom within impenetrable spherical boxes of varying radii. The study focuses on the low-lying excited doublet states 1\(s^{{2}}\)ns, 1\(s^{{2}}n\)p, and 1\(s^{{2}}n\)d, utilizing plasma potentials such as the screened Coulomb (SCP), exponential cosine screened Coulomb (ECSCP), and Hulthén potentials. Energy eigenvalues are determined using appropriate trial wave functions, which account for electron–electron repulsion and spin parts to adhere to the Pauli Exclusion Principle. Moreover, two factors related to the wave function of the compressed system and ECSCP model are considered. The results reveal an intriguing relative ordering for the lithium atom using the three plasma models, with many of the findings being significant contributions yet to be explored.
期刊介绍:
The journal Few-Body Systems presents original research work – experimental, theoretical and computational – investigating the behavior of any classical or quantum system consisting of a small number of well-defined constituent structures. The focus is on the research methods, properties, and results characteristic of few-body systems. Examples of few-body systems range from few-quark states, light nuclear and hadronic systems; few-electron atomic systems and small molecules; and specific systems in condensed matter and surface physics (such as quantum dots and highly correlated trapped systems), up to and including large-scale celestial structures.
Systems for which an equivalent one-body description is available or can be designed, and large systems for which specific many-body methods are needed are outside the scope of the journal.
The journal is devoted to the publication of all aspects of few-body systems research and applications. While concentrating on few-body systems well-suited to rigorous solutions, the journal also encourages interdisciplinary contributions that foster common approaches and insights, introduce and benchmark the use of novel tools (e.g. machine learning) and develop relevant applications (e.g. few-body aspects in quantum technologies).