Enhanced Thermal Shock Resistance and Mechanical Characteristics of Microwave Sintered ZrB2-SiC-MgO Composites

IF 3.3 3区 材料科学 Q3 CHEMISTRY, PHYSICAL Silicon Pub Date : 2024-12-18 DOI:10.1007/s12633-024-03209-z
Ankur Sharma, Anish Upadhyaya
{"title":"Enhanced Thermal Shock Resistance and Mechanical Characteristics of Microwave Sintered ZrB2-SiC-MgO Composites","authors":"Ankur Sharma,&nbsp;Anish Upadhyaya","doi":"10.1007/s12633-024-03209-z","DOIUrl":null,"url":null,"abstract":"<div><p>The potential to utilize ZrB<sub>2</sub> based ceramics for high-temperature space applications requires excellent thermal shock resistance. Therefore, the present study describes the use of water quenching method to determine the thermal shock resistance of microwave sintered ZrB<sub>2</sub>-25 SiC (vol. %) and ZrB<sub>2</sub>-25 SiC-2 MgO (vol. %) composites at 400 °C, 800 °C and 1200 °C. The MgO incorporation enhanced the ability of ZrB<sub>2</sub>-25 SiC (vol. %) composite to withstand thermal shock due to the higher fracture toughness and flexural strength. The crack deflection was observed as the primary toughening mechanism after thermal shock. The ZrB<sub>2</sub>-SiC-MgO composite demonstrated outstanding thermal shock resistance with a critical thermal shock temperature difference of 974.41 °C, surpassing that of ZrB<sub>2</sub>-SiC composite by 1.6 times. Post thermal shock test at 1200 °C, the maximum microhardness of 14.99 ± 1.29 GPa, maximum compression strength of 769.01 ± 36.66 MPa, maximum fracture toughness of 5.98 ± 0.39 MPa.m<sup>0.5</sup> and maximum critical energy release rate of 76.05 ± 9.89 J/m<sup>2</sup> were observed for ZrB<sub>2</sub>-25 SiC-2 MgO (vol. %) composition. The addition of MgO to ZrB<sub>2</sub>-SiC resulted in exceptional performance in microhardness, compression strength, and fracture toughness following thermal shock testing at 1200 °C. Specifically, the ZrB<sub>2</sub>-SiC-MgO composite retained 94.16%, 91.28%, and 95.52% of its pre thermal shock values for these mechanical properties, emphasizing its thermal stability and resistance to degradation under high-temperature conditions.</p></div>","PeriodicalId":776,"journal":{"name":"Silicon","volume":"17 2","pages":"449 - 463"},"PeriodicalIF":3.3000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Silicon","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12633-024-03209-z","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The potential to utilize ZrB2 based ceramics for high-temperature space applications requires excellent thermal shock resistance. Therefore, the present study describes the use of water quenching method to determine the thermal shock resistance of microwave sintered ZrB2-25 SiC (vol. %) and ZrB2-25 SiC-2 MgO (vol. %) composites at 400 °C, 800 °C and 1200 °C. The MgO incorporation enhanced the ability of ZrB2-25 SiC (vol. %) composite to withstand thermal shock due to the higher fracture toughness and flexural strength. The crack deflection was observed as the primary toughening mechanism after thermal shock. The ZrB2-SiC-MgO composite demonstrated outstanding thermal shock resistance with a critical thermal shock temperature difference of 974.41 °C, surpassing that of ZrB2-SiC composite by 1.6 times. Post thermal shock test at 1200 °C, the maximum microhardness of 14.99 ± 1.29 GPa, maximum compression strength of 769.01 ± 36.66 MPa, maximum fracture toughness of 5.98 ± 0.39 MPa.m0.5 and maximum critical energy release rate of 76.05 ± 9.89 J/m2 were observed for ZrB2-25 SiC-2 MgO (vol. %) composition. The addition of MgO to ZrB2-SiC resulted in exceptional performance in microhardness, compression strength, and fracture toughness following thermal shock testing at 1200 °C. Specifically, the ZrB2-SiC-MgO composite retained 94.16%, 91.28%, and 95.52% of its pre thermal shock values for these mechanical properties, emphasizing its thermal stability and resistance to degradation under high-temperature conditions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微波烧结ZrB2-SiC-MgO复合材料的抗热震性能和力学性能
利用ZrB2基陶瓷用于高温空间应用的潜力需要出色的抗热震性。因此,本研究描述了采用水淬法测定微波烧结ZrB2-25 SiC (vol. %)和ZrB2-25 SiC-2 MgO (vol. %)复合材料在400℃、800℃和1200℃下的抗热震性能。MgO的掺入提高了ZrB2-25 SiC (vol. %)复合材料的断裂韧性和抗弯强度,增强了复合材料的抗热冲击能力。热冲击后的主要增韧机制是裂纹挠曲。ZrB2-SiC- mgo复合材料表现出优异的抗热冲击性能,其临界热冲击温差为974.41℃,是ZrB2-SiC复合材料的1.6倍。1200℃热冲击后,ZrB2-25 SiC-2 MgO (vol. %)组分的最大显微硬度为14.99±1.29 GPa,最大抗压强度为769.01±36.66 MPa,最大断裂韧性为5.98±0.39 MPa.m0.5,最大临界能量释放率为76.05±9.89 J/m2。在1200°C的热冲击测试中,在ZrB2-SiC中添加MgO后,在显微硬度、抗压强度和断裂韧性方面表现优异。具体而言,ZrB2-SiC-MgO复合材料的这些力学性能保持了其热前冲击值的94.16%,91.28%和95.52%,强调了其热稳定性和高温条件下的抗降解性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Silicon
Silicon CHEMISTRY, PHYSICAL-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
5.90
自引率
20.60%
发文量
685
审稿时长
>12 weeks
期刊介绍: The journal Silicon is intended to serve all those involved in studying the role of silicon as an enabling element in materials science. There are no restrictions on disciplinary boundaries provided the focus is on silicon-based materials or adds significantly to the understanding of such materials. Accordingly, such contributions are welcome in the areas of inorganic and organic chemistry, physics, biology, engineering, nanoscience, environmental science, electronics and optoelectronics, and modeling and theory. Relevant silicon-based materials include, but are not limited to, semiconductors, polymers, composites, ceramics, glasses, coatings, resins, composites, small molecules, and thin films.
期刊最新文献
Quadruple Metal Gate Work Function Engineering to Enhance DC and Analog/RF Performance in Junctionless Cylindrical GAA Si Nanowire MOSFET at Sub 3 nm Technology Node Combined Effect of Melt Shearing and Mold Vibration on Morphology of Si and Mechanical Properties of Rheo-gravity Die Casting of A339 Al Alloy Modelling and Optimization of Silica Extraction from Perlite Using RSM, ANN, and NSGA-II Techniques Performance Improvement of Nanowire TFET by Using Different Ferroelectric Semiconductor Structures Performance Analysis of Symmetrical Single and Dual Spacer Engineering On a Novel Dopingless Nanosheet Field-effect Transistor (DL-NSFET)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1