{"title":"Thermal Gradient Powering Spin Current in Quantum Dot-Magnetic Insulators Hybrid","authors":"Emil Siuda, Piotr Trocha","doi":"10.1007/s10948-025-06921-y","DOIUrl":null,"url":null,"abstract":"<div><p>The growing energy consumption of the computational sector worldwide necessitates the search for sustainable methods of powering and performing calculations. The fast-emerging field of spin caloritronics offers a promising solution by combining the advantages of performing computations on spins instead of charges and driving these computations through temperature differences rather than voltage. Among the various approaches, spin waves and their quanta of excitations, known as magnons, are considered promising carriers of spin-encoded information. In this article, we examine the magnon current generated in a system composed of a magnetic insulator/quantum dot/magnetic insulator, driven by a small temperature difference applied between the two insulators. By expanding the magnon current in terms of the applied temperature bias, we analyze the contributions of successive terms up to the third order of the temperature difference. Each term exhibits a similar structure, consisting of a driving-like and a damping-like component. The driving-like term is dependent on the coupling strength between the quantum dot and the electrodes. We explicitly show that the second-order term of the magnon current vanishes when the couplings of the quantum dot to the magnetic insulators are equal. Overall, the first two terms are sufficient to capture the behavior of the magnon current across the full range of temperature differences. For extreme values of the temperature gradient, the approximate results align with the exact ones only when there is significant asymmetry in the coupling strengths. Finally, we demonstrate that the system can function as a spin diode, capable of rectifying the magnon current when the temperature bias is reversed.</p></div>","PeriodicalId":669,"journal":{"name":"Journal of Superconductivity and Novel Magnetism","volume":"38 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Superconductivity and Novel Magnetism","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10948-025-06921-y","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The growing energy consumption of the computational sector worldwide necessitates the search for sustainable methods of powering and performing calculations. The fast-emerging field of spin caloritronics offers a promising solution by combining the advantages of performing computations on spins instead of charges and driving these computations through temperature differences rather than voltage. Among the various approaches, spin waves and their quanta of excitations, known as magnons, are considered promising carriers of spin-encoded information. In this article, we examine the magnon current generated in a system composed of a magnetic insulator/quantum dot/magnetic insulator, driven by a small temperature difference applied between the two insulators. By expanding the magnon current in terms of the applied temperature bias, we analyze the contributions of successive terms up to the third order of the temperature difference. Each term exhibits a similar structure, consisting of a driving-like and a damping-like component. The driving-like term is dependent on the coupling strength between the quantum dot and the electrodes. We explicitly show that the second-order term of the magnon current vanishes when the couplings of the quantum dot to the magnetic insulators are equal. Overall, the first two terms are sufficient to capture the behavior of the magnon current across the full range of temperature differences. For extreme values of the temperature gradient, the approximate results align with the exact ones only when there is significant asymmetry in the coupling strengths. Finally, we demonstrate that the system can function as a spin diode, capable of rectifying the magnon current when the temperature bias is reversed.
期刊介绍:
The Journal of Superconductivity and Novel Magnetism serves as the international forum for the most current research and ideas in these fields. This highly acclaimed journal publishes peer-reviewed original papers, conference proceedings and invited review articles that examine all aspects of the science and technology of superconductivity, including new materials, new mechanisms, basic and technological properties, new phenomena, and small- and large-scale applications. Novel magnetism, which is expanding rapidly, is also featured in the journal. The journal focuses on such areas as spintronics, magnetic semiconductors, properties of magnetic multilayers, magnetoresistive materials and structures, magnetic oxides, etc. Novel superconducting and magnetic materials are complex compounds, and the journal publishes articles related to all aspects their study, such as sample preparation, spectroscopy and transport properties as well as various applications.