{"title":"Current Status and Future Prospects of Lyotropic Liquid Crystals as a Nanocarrier Delivery System for the Treatment of Cancer","authors":"Raj Baldha, G. S. Chakraborthy, Sachin Rathod","doi":"10.1208/s12249-025-03058-y","DOIUrl":null,"url":null,"abstract":"<div><p>Multidrug resistance (MDR) poses a significant challenge in cancer treatment by reducing the efficacy of therapies. This review highlights the potential of lyotropic liquid crystals (LLCs) as innovative nanocarrier systems to overcome MDR. LLCs are characterized by their highly ordered internal structures, which can self-assemble into various phases, including lamellar, hexagonal, and cubic geometries. These structures allow LLCs to encapsulate and release cargo with diverse sizes and polarities, making them promising candidates for drug delivery applications. The phase of LLCs—whether cubic, hexagonal, or lamellar—can influence the physicochemical properties of encapsulated drugs, enabling tailored release profiles such as sustained, controlled, or targeted delivery. This review also explores the transitions in molecular geometry of amphiphilic compounds, additives, and hydrotrope molecules, which affect the formation and stability of LLC phases with varying pore sizes and water channels. The conclusion underscores the importance of ongoing research into LLCs for addressing cancer treatment challenges, including MDR. The versatility of LLCs extends beyond drug delivery to theranostic and diagnostic applications. By leveraging responsive smart drug delivery systems or incorporating natural compounds, LLCs offer a multifaceted approach to cancer therapy, highlighting their potential as a breakthrough in the field.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":6925,"journal":{"name":"AAPS PharmSciTech","volume":"26 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPS PharmSciTech","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1208/s12249-025-03058-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Multidrug resistance (MDR) poses a significant challenge in cancer treatment by reducing the efficacy of therapies. This review highlights the potential of lyotropic liquid crystals (LLCs) as innovative nanocarrier systems to overcome MDR. LLCs are characterized by their highly ordered internal structures, which can self-assemble into various phases, including lamellar, hexagonal, and cubic geometries. These structures allow LLCs to encapsulate and release cargo with diverse sizes and polarities, making them promising candidates for drug delivery applications. The phase of LLCs—whether cubic, hexagonal, or lamellar—can influence the physicochemical properties of encapsulated drugs, enabling tailored release profiles such as sustained, controlled, or targeted delivery. This review also explores the transitions in molecular geometry of amphiphilic compounds, additives, and hydrotrope molecules, which affect the formation and stability of LLC phases with varying pore sizes and water channels. The conclusion underscores the importance of ongoing research into LLCs for addressing cancer treatment challenges, including MDR. The versatility of LLCs extends beyond drug delivery to theranostic and diagnostic applications. By leveraging responsive smart drug delivery systems or incorporating natural compounds, LLCs offer a multifaceted approach to cancer therapy, highlighting their potential as a breakthrough in the field.
期刊介绍:
AAPS PharmSciTech is a peer-reviewed, online-only journal committed to serving those pharmaceutical scientists and engineers interested in the research, development, and evaluation of pharmaceutical dosage forms and delivery systems, including drugs derived from biotechnology and the manufacturing science pertaining to the commercialization of such dosage forms. Because of its electronic nature, AAPS PharmSciTech aspires to utilize evolving electronic technology to enable faster and diverse mechanisms of information delivery to its readership. Submission of uninvited expert reviews and research articles are welcomed.