Comparison of Hot Corrosion Behavior of Ni36Fe34Al17Cr10Mo1Ti2 and Ni34Co25Fe12Al15Cr12W2 Alloys in NaCl–KCl–Na2SO4 Salt

IF 3.9 2区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING Acta Metallurgica Sinica-English Letters Pub Date : 2024-11-07 DOI:10.1007/s40195-024-01791-0
Xiaoming Liu, Fengyang Quan, Yuan Gao, Shaodong Zhang, Jianbin Wang, Zhijun Wang, Junjie Li, Feng He, Jincheng Wang
{"title":"Comparison of Hot Corrosion Behavior of Ni36Fe34Al17Cr10Mo1Ti2 and Ni34Co25Fe12Al15Cr12W2 Alloys in NaCl–KCl–Na2SO4 Salt","authors":"Xiaoming Liu,&nbsp;Fengyang Quan,&nbsp;Yuan Gao,&nbsp;Shaodong Zhang,&nbsp;Jianbin Wang,&nbsp;Zhijun Wang,&nbsp;Junjie Li,&nbsp;Feng He,&nbsp;Jincheng Wang","doi":"10.1007/s40195-024-01791-0","DOIUrl":null,"url":null,"abstract":"<div><p>Hot corrosion in molten salt is a complex process, involving both chemical corrosion and electrochemical corrosion. Interfacial reactions and oxide dissolution can also impact the corrosion results. Compared with single component/type salt, multi-component/type hot corrosion leads to more severe degradation, while the multi-component alloys offer potential chances for developing anti-corrosion metallic materials. In this study, we aim to elucidate the hot corrosion behavior and gain a better understanding of the corrosion mechanism of the multi-component alloys under multi-component/type NaCl-KCl-Na<sub>2</sub>SO<sub>4</sub> salt. The corrosion behavior of dual-phase Ni<sub>36</sub>Fe<sub>34</sub>Al<sub>17</sub>Cr<sub>10</sub>Mo<sub>1</sub>Ti<sub>2</sub> (HEA-1) and Ni<sub>34</sub>Co<sub>25</sub>Fe<sub>12</sub>Al<sub>15</sub>Cr<sub>12</sub>W<sub>2</sub> (HEA-2) alloys was studied within NaCl-KCl-Na<sub>2</sub>SO<sub>4</sub> molten salt with mass ratios of 5:5:1 and 5:5:2. After exposure to the salt at 650 °C for 168 h, it was found that the Ni<sub>34</sub>Co<sub>25</sub>Fe<sub>12</sub>Al<sub>15</sub>Cr<sub>12</sub>W<sub>2</sub> exhibited better corrosion resistance than Ni<sub>36</sub>Fe<sub>34</sub>Al<sub>17</sub>Cr<sub>10</sub>Mo<sub>1</sub>Ti<sub>2</sub>. The improved performance of Ni<sub>30</sub>Co<sub>25</sub>Fe<sub>12</sub>Al<sub>15</sub>Cr<sub>12</sub>W<sub>2</sub> alloy was attributed to the Co element, which facilitated the formation of dense oxides scale and enhanced scale adhesion. Alkali chlorides with stronger penetration ability dominated the corrosion process and alkali sulfate further aggravated the corrosion. The primary corrosion mechanisms involved in this process were identified as “electrochemical mechanism” attacking the body-centered cubic structure in the alloys and “active oxidation” causing dissolution of the alloy elements.</p></div>","PeriodicalId":457,"journal":{"name":"Acta Metallurgica Sinica-English Letters","volume":"38 2","pages":"205 - 217"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Metallurgica Sinica-English Letters","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1007/s40195-024-01791-0","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Hot corrosion in molten salt is a complex process, involving both chemical corrosion and electrochemical corrosion. Interfacial reactions and oxide dissolution can also impact the corrosion results. Compared with single component/type salt, multi-component/type hot corrosion leads to more severe degradation, while the multi-component alloys offer potential chances for developing anti-corrosion metallic materials. In this study, we aim to elucidate the hot corrosion behavior and gain a better understanding of the corrosion mechanism of the multi-component alloys under multi-component/type NaCl-KCl-Na2SO4 salt. The corrosion behavior of dual-phase Ni36Fe34Al17Cr10Mo1Ti2 (HEA-1) and Ni34Co25Fe12Al15Cr12W2 (HEA-2) alloys was studied within NaCl-KCl-Na2SO4 molten salt with mass ratios of 5:5:1 and 5:5:2. After exposure to the salt at 650 °C for 168 h, it was found that the Ni34Co25Fe12Al15Cr12W2 exhibited better corrosion resistance than Ni36Fe34Al17Cr10Mo1Ti2. The improved performance of Ni30Co25Fe12Al15Cr12W2 alloy was attributed to the Co element, which facilitated the formation of dense oxides scale and enhanced scale adhesion. Alkali chlorides with stronger penetration ability dominated the corrosion process and alkali sulfate further aggravated the corrosion. The primary corrosion mechanisms involved in this process were identified as “electrochemical mechanism” attacking the body-centered cubic structure in the alloys and “active oxidation” causing dissolution of the alloy elements.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ni36Fe34Al17Cr10Mo1Ti2和Ni34Co25Fe12Al15Cr12W2合金在NaCl-KCl-Na2SO4盐中的热腐蚀行为比较
熔盐热腐蚀是一个复杂的过程,涉及化学腐蚀和电化学腐蚀。界面反应和氧化物溶解也会影响腐蚀结果。与单组分/型盐相比,多组分/型热腐蚀导致了更严重的降解,而多组分合金为开发耐腐蚀金属材料提供了潜在的机会。在本研究中,我们旨在阐明多组分合金在多组分/型NaCl-KCl-Na2SO4盐下的热腐蚀行为,从而更好地了解多组分合金的腐蚀机理。研究了双相Ni36Fe34Al17Cr10Mo1Ti2 (HEA-1)和Ni34Co25Fe12Al15Cr12W2 (HEA-2)合金在质量比为5:5:1和5:5:2的NaCl-KCl-Na2SO4熔盐中的腐蚀行为。在650°C盐中浸泡168 h后,Ni34Co25Fe12Al15Cr12W2的耐蚀性优于Ni36Fe34Al17Cr10Mo1Ti2。Ni30Co25Fe12Al15Cr12W2合金性能的提高主要归功于Co元素的加入,Co元素促进了致密氧化物垢的形成,增强了垢的附着力。碱氯化物具有较强的渗透能力,在腐蚀过程中占主导地位,碱硫酸盐进一步加剧了腐蚀。在这一过程中,主要的腐蚀机制被确定为“电化学机制”攻击合金的体心立方结构和“活性氧化”导致合金元素的溶解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Metallurgica Sinica-English Letters
Acta Metallurgica Sinica-English Letters METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
6.60
自引率
14.30%
发文量
122
审稿时长
2 months
期刊介绍: This international journal presents compact reports of significant, original and timely research reflecting progress in metallurgy, materials science and engineering, including materials physics, physical metallurgy, and process metallurgy.
期刊最新文献
Role of Grain Boundary Segregation and Nanoprecipitation on the Tensile Properties and Thermal Stability of Dilute Mg–0.7Al–0.3Ca (wt%) Alloy Correction: Enhanced Hydrogen Embrittlement Resistance in a Vanadium-Alloyed 42CrNiMoV Steel for High-Strength Wind Turbine Bolts Dissolution Behaviors of Corrosion Products on 316LN Stainless Steel in Simulated Shutdown Acid-Reducing Water Chemistry Solute Segregation and Grain Boundary Cohesion of Magnesium Binary Alloys: A First-Principles Study Reinforcement Learning in Materials Science: Recent Advances, Methodologies and Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1