{"title":"Design and Improvement of Quench Protection for A 3 T MRI Superconducting Magnet","authors":"Wangnan Shang, Yunhao Mei, Shige Yang, Bohan Tang, Shili Jiang, Hui Yu, Bowen Xie, Guangli Kuang, Donghui Jiang","doi":"10.1007/s10909-024-03238-3","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, global investment in magnetic resonance imaging (MRI) has surged, with 3 T MRI technology overtaking 1.5 T as the standard in hospitals gradually. A combination of linear programming, genetic algorithms, and nonlinear programming was employed to design an actively shielded 3 T superconducting MRI magnet system. This magnet consists of seven main coils and two shielding coils, achieving a magnetic field with a peak-to-peak inhomogeneity of 10 ppm within a 50-cm-diameter spherical volume (DSV). To address the risk of quench in superconducting magnets, which can lead to damage due to excessive temperature, voltage, and stress, a quench protection system is crucial. The designed system segments the coils for protection, using diode pairs and shunt resistors to manage the quench. Initial simulations indicated that temperature rises and voltages were within safe limits, but some coils were slow to quench or did not quench at all, risking burnout. To mitigate this, quench propagation heating plates were added to increase the quench speed. Updated simulations showed rapid quench across all coils and a significant reduction in hot spot temperatures and peak voltages.</p></div>","PeriodicalId":641,"journal":{"name":"Journal of Low Temperature Physics","volume":"218 3-4","pages":"146 - 165"},"PeriodicalIF":1.1000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Low Temperature Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10909-024-03238-3","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, global investment in magnetic resonance imaging (MRI) has surged, with 3 T MRI technology overtaking 1.5 T as the standard in hospitals gradually. A combination of linear programming, genetic algorithms, and nonlinear programming was employed to design an actively shielded 3 T superconducting MRI magnet system. This magnet consists of seven main coils and two shielding coils, achieving a magnetic field with a peak-to-peak inhomogeneity of 10 ppm within a 50-cm-diameter spherical volume (DSV). To address the risk of quench in superconducting magnets, which can lead to damage due to excessive temperature, voltage, and stress, a quench protection system is crucial. The designed system segments the coils for protection, using diode pairs and shunt resistors to manage the quench. Initial simulations indicated that temperature rises and voltages were within safe limits, but some coils were slow to quench or did not quench at all, risking burnout. To mitigate this, quench propagation heating plates were added to increase the quench speed. Updated simulations showed rapid quench across all coils and a significant reduction in hot spot temperatures and peak voltages.
期刊介绍:
The Journal of Low Temperature Physics publishes original papers and review articles on all areas of low temperature physics and cryogenics, including theoretical and experimental contributions. Subject areas include: Quantum solids, liquids and gases; Superfluidity; Superconductivity; Condensed matter physics; Experimental techniques; The Journal encourages the submission of Rapid Communications and Special Issues.