Dr. Ganesh Sunil More, Dr. Rajaram Bal, Prof. Dr. Rajendra Srivastava
{"title":"Pd Nanoparticles Decorated CeZrOx for Enhanced Photocatalytic Hydrogenation of Biomass-Derived Compounds","authors":"Dr. Ganesh Sunil More, Dr. Rajaram Bal, Prof. Dr. Rajendra Srivastava","doi":"10.1002/cctc.202401466","DOIUrl":null,"url":null,"abstract":"<p>The photocatalytic conversion of biomass-derived compounds into value-added chemicals presents a promising protocol for the sustainable production of renewable chemicals. Our study explores the hydrogenation of biomass model compounds under visible light illumination. Zr was incorporated into the CeO<sub>2</sub> framework, forming a CeZrOx(1:0.5) solid solution, confirmed by powder X-ray diffraction (PXRD) and X-ray photoelectron spectroscopy (XPS) analyses. The light uptake capacity of the CeZrOx solid solution was characterized using UV–visible spectroscopy. Additionally, the band structure of the CeZrOx solid solution was assessed using valance band X-ray photoelectron spectroscopy (VB-XPS) and Ultraviolet photoelectron spectroscopy (UPS) analysis, revealing a Z-Scheme, which was further confirmed by various control experiments. Upon decorating the CeZrOx(1:0.5) solid solution with 1 wt% palladium (Pd), the resulting 1Pd/CeZrOx(1:0.5) composite exhibited improved charge separation and enhanced visible light absorption capacity. This composite achieved ∼99% conversion of furfural to tetrahydrofurfuryl alcohol under a 15 W blue LED illumination and 0.2 MPa hydrogen. Similarly, it demonstrated ∼99% conversion of benzyl phenyl ether (BPE) to toluene and phenol under a 10 W blue LED illumination. Our findings elucidate the active sites and demonstrate the recyclability of mixed metal oxides for selective furfural hydrogenation and BPE hydrogenolysis under visible light.</p>","PeriodicalId":141,"journal":{"name":"ChemCatChem","volume":"17 3","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemCatChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cctc.202401466","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The photocatalytic conversion of biomass-derived compounds into value-added chemicals presents a promising protocol for the sustainable production of renewable chemicals. Our study explores the hydrogenation of biomass model compounds under visible light illumination. Zr was incorporated into the CeO2 framework, forming a CeZrOx(1:0.5) solid solution, confirmed by powder X-ray diffraction (PXRD) and X-ray photoelectron spectroscopy (XPS) analyses. The light uptake capacity of the CeZrOx solid solution was characterized using UV–visible spectroscopy. Additionally, the band structure of the CeZrOx solid solution was assessed using valance band X-ray photoelectron spectroscopy (VB-XPS) and Ultraviolet photoelectron spectroscopy (UPS) analysis, revealing a Z-Scheme, which was further confirmed by various control experiments. Upon decorating the CeZrOx(1:0.5) solid solution with 1 wt% palladium (Pd), the resulting 1Pd/CeZrOx(1:0.5) composite exhibited improved charge separation and enhanced visible light absorption capacity. This composite achieved ∼99% conversion of furfural to tetrahydrofurfuryl alcohol under a 15 W blue LED illumination and 0.2 MPa hydrogen. Similarly, it demonstrated ∼99% conversion of benzyl phenyl ether (BPE) to toluene and phenol under a 10 W blue LED illumination. Our findings elucidate the active sites and demonstrate the recyclability of mixed metal oxides for selective furfural hydrogenation and BPE hydrogenolysis under visible light.
期刊介绍:
With an impact factor of 4.495 (2018), ChemCatChem is one of the premier journals in the field of catalysis. The journal provides primary research papers and critical secondary information on heterogeneous, homogeneous and bio- and nanocatalysis. The journal is well placed to strengthen cross-communication within between these communities. Its authors and readers come from academia, the chemical industry, and government laboratories across the world. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies, and is supported by the German Catalysis Society.