Distributionally robust optimal power flow based on multi-transport hyperrectangle ambiguity set

IF 2 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Iet Generation Transmission & Distribution Pub Date : 2025-02-07 DOI:10.1049/gtd2.13360
Weizhen Ou, Peijie Li, Zonglong Weng, Jiawen Xiao, Xiaoqing Bai
{"title":"Distributionally robust optimal power flow based on multi-transport hyperrectangle ambiguity set","authors":"Weizhen Ou,&nbsp;Peijie Li,&nbsp;Zonglong Weng,&nbsp;Jiawen Xiao,&nbsp;Xiaoqing Bai","doi":"10.1049/gtd2.13360","DOIUrl":null,"url":null,"abstract":"<p>The Wasserstein distributionally robust optimization has become the preferred method for addressing the uncertainties in optimal power flow problems caused by renewable energy sources. However, when the system involves high-dimensional random variables, such as multiple solar or wind farms, the curse of dimensionality associated with this method leads to a slow convergence rate of Wasserstein ambiguity sets. Therefore, it is essential to explore novel ambiguity sets which can effectively address the dimensionality problem. This paper proposes a distributionally robust optimal power flow model based on a multi-transport hyperrectangle ambiguity set to tackle the uncertainties in wind power. First, this paper presents the multi-transport hyperrectangle, which resolves the curse of dimensionality issue associated with Wasserstein ambiguity sets. Furthermore, the wind power curtailment cost in the objective function is reformulated into a tractable form using duality theory, enabling commercial solvers to provide efficient solutions. Finally, tests conducted on the modified IEEE 14-bus and IEEE 118-bus systems demonstrate that the proposed ambiguity set maintains a stable convergence rate under high-dimensional random variables without rapid deterioration as the sample size increases. Moreover, the model achieves significant cost reductions while ensuring system stability.</p>","PeriodicalId":13261,"journal":{"name":"Iet Generation Transmission & Distribution","volume":"19 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.13360","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Generation Transmission & Distribution","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/gtd2.13360","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The Wasserstein distributionally robust optimization has become the preferred method for addressing the uncertainties in optimal power flow problems caused by renewable energy sources. However, when the system involves high-dimensional random variables, such as multiple solar or wind farms, the curse of dimensionality associated with this method leads to a slow convergence rate of Wasserstein ambiguity sets. Therefore, it is essential to explore novel ambiguity sets which can effectively address the dimensionality problem. This paper proposes a distributionally robust optimal power flow model based on a multi-transport hyperrectangle ambiguity set to tackle the uncertainties in wind power. First, this paper presents the multi-transport hyperrectangle, which resolves the curse of dimensionality issue associated with Wasserstein ambiguity sets. Furthermore, the wind power curtailment cost in the objective function is reformulated into a tractable form using duality theory, enabling commercial solvers to provide efficient solutions. Finally, tests conducted on the modified IEEE 14-bus and IEEE 118-bus systems demonstrate that the proposed ambiguity set maintains a stable convergence rate under high-dimensional random variables without rapid deterioration as the sample size increases. Moreover, the model achieves significant cost reductions while ensuring system stability.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Iet Generation Transmission & Distribution
Iet Generation Transmission & Distribution 工程技术-工程:电子与电气
CiteScore
6.10
自引率
12.00%
发文量
301
审稿时长
5.4 months
期刊介绍: IET Generation, Transmission & Distribution is intended as a forum for the publication and discussion of current practice and future developments in electric power generation, transmission and distribution. Practical papers in which examples of good present practice can be described and disseminated are particularly sought. Papers of high technical merit relying on mathematical arguments and computation will be considered, but authors are asked to relegate, as far as possible, the details of analysis to an appendix. The scope of IET Generation, Transmission & Distribution includes the following: Design of transmission and distribution systems Operation and control of power generation Power system management, planning and economics Power system operation, protection and control Power system measurement and modelling Computer applications and computational intelligence in power flexible AC or DC transmission systems Special Issues. Current Call for papers: Next Generation of Synchrophasor-based Power System Monitoring, Operation and Control - https://digital-library.theiet.org/files/IET_GTD_CFP_NGSPSMOC.pdf
期刊最新文献
A Physics-Data Driven Approach for Identifying Leakage Users in Low-Voltage Distribution Systems Blind Source Separation in Sustainable Energy Systems Using Free Component Analysis Considering Power-usage Interdependence RETRACTION: Cross-country high impedance fault diagnosis scheme for unbalanced distribution network employing detrended cross-correlation RETRACTION: Fixed head hydrothermal scheduling considering uncertainty of load demand and renewable energy sources RETRACTION: Tolerable random interruption duration based reliability estimation of stand alone hybrid renewable energy system by network reduction and sequential Monte Carlo simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1