Combining observational and experimental data to estimate environmental and species drivers of fungal metacommunity dynamics

IF 4.4 2区 环境科学与生态学 Q1 ECOLOGY Ecology Pub Date : 2025-02-07 DOI:10.1002/ecy.70014
Hedvig Kristina Nenzén, Helen Moor, Robert B. O'Hara, Mari Jönsson, Jenni Nordén, Elisabet Ottosson, Tord Snäll
{"title":"Combining observational and experimental data to estimate environmental and species drivers of fungal metacommunity dynamics","authors":"Hedvig Kristina Nenzén,&nbsp;Helen Moor,&nbsp;Robert B. O'Hara,&nbsp;Mari Jönsson,&nbsp;Jenni Nordén,&nbsp;Elisabet Ottosson,&nbsp;Tord Snäll","doi":"10.1002/ecy.70014","DOIUrl":null,"url":null,"abstract":"<p>Understanding the distribution and dynamics of species is central to ecology and important for managing biodiversity. The distributions of species in metacommunities are determined by many factors, including environmental conditions and interactions between species. Yet, it is difficult to quantify the effect of species interactions on metacommunity dynamics from observational data. We present an approach to estimate the importance of species interactions that combines data from two observational presence–absence inventories (providing colonization–extinction data) with data from species interaction experiments (providing informative prior distributions in the Bayesian framework). We further illustrate the approach on wood-decay fungi that interact within a downed log through competition for resources and space, and facilitate the succession of other species by decomposing the wood. Specifically, we estimated the relative importance of species interactions by examining how the presence of a species influenced the colonization and extinction probability of other species. Temporal data on fruit body occurrence of 12 species inventoried twice were jointly analyzed with experimental data from two laboratory experiments that aimed to estimate competitive interactions. Both environmental variables and species interactions affected colonization and extinction dynamics. Late-successional fungi had more colonization interactions with predecessor species than early-successional species. We identified several species interactions, and the presence of certain species changed the probability that later-successional species colonized by −81% to 512%. The presence of certain species increased the probability that other species went extinct from a log by 14%–61%. Including the informative priors from experimental data added two colonization interactions and one extinction interaction for which the observational field data was inconclusive. However, most species had no detectable interactions, either because they did not interact or because of low species occupancy, meaning data limitation. We show how temporal presence-absence data can be combined with experimental data to identify which species influence the colonization-extinction dynamics of others. Accounting for species interactions in metacommunity models, in addition to environmental drivers, is important because interactions can have cascading effects on other species.</p>","PeriodicalId":11484,"journal":{"name":"Ecology","volume":"106 2","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecy.70014","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecy.70014","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the distribution and dynamics of species is central to ecology and important for managing biodiversity. The distributions of species in metacommunities are determined by many factors, including environmental conditions and interactions between species. Yet, it is difficult to quantify the effect of species interactions on metacommunity dynamics from observational data. We present an approach to estimate the importance of species interactions that combines data from two observational presence–absence inventories (providing colonization–extinction data) with data from species interaction experiments (providing informative prior distributions in the Bayesian framework). We further illustrate the approach on wood-decay fungi that interact within a downed log through competition for resources and space, and facilitate the succession of other species by decomposing the wood. Specifically, we estimated the relative importance of species interactions by examining how the presence of a species influenced the colonization and extinction probability of other species. Temporal data on fruit body occurrence of 12 species inventoried twice were jointly analyzed with experimental data from two laboratory experiments that aimed to estimate competitive interactions. Both environmental variables and species interactions affected colonization and extinction dynamics. Late-successional fungi had more colonization interactions with predecessor species than early-successional species. We identified several species interactions, and the presence of certain species changed the probability that later-successional species colonized by −81% to 512%. The presence of certain species increased the probability that other species went extinct from a log by 14%–61%. Including the informative priors from experimental data added two colonization interactions and one extinction interaction for which the observational field data was inconclusive. However, most species had no detectable interactions, either because they did not interact or because of low species occupancy, meaning data limitation. We show how temporal presence-absence data can be combined with experimental data to identify which species influence the colonization-extinction dynamics of others. Accounting for species interactions in metacommunity models, in addition to environmental drivers, is important because interactions can have cascading effects on other species.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Ecology
Ecology 环境科学-生态学
CiteScore
8.30
自引率
2.10%
发文量
332
审稿时长
3 months
期刊介绍: Ecology publishes articles that report on the basic elements of ecological research. Emphasis is placed on concise, clear articles documenting important ecological phenomena. The journal publishes a broad array of research that includes a rapidly expanding envelope of subject matter, techniques, approaches, and concepts: paleoecology through present-day phenomena; evolutionary, population, physiological, community, and ecosystem ecology, as well as biogeochemistry; inclusive of descriptive, comparative, experimental, mathematical, statistical, and interdisciplinary approaches.
期刊最新文献
Idiosyncratic responses to biotic and environmental filters in wood-inhabiting fungal communities Coyotes Hunt Harbor Seal Pups on the California Coast Climate-induced range expansion of cushion plants promotes functional homogenization of soil nematode communities Interactive effects of leaf pathogens and plant mycorrhizal type on plant diversity–productivity relationships HiDaFernPT: Historical data of spore availability for 121 fern and lycopod taxa in Portugal (1926–2013)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1