{"title":"Role of Surfactants on Electrocatalytic Activity of Co/Al Layered Double Hydroxides For Hydrogen and Oxygen Generation","authors":"C V Sijla Rosely, Honey John","doi":"10.1002/cctc.202401377","DOIUrl":null,"url":null,"abstract":"<p>Layered double hydroxides (LDHs) have recently attracted much attention in the scientific community as a prominent catalyst for oxygen evolution reaction (OER) because they are economical, extremely stable, and highly active. Literature on LDH alone and their hybrids for catalyzing water oxidation are readily available, but LDH catalyzing hydrogen evolution reaction (HER) is meager. Here, we synthesized Co/Al-based LDH systems that efficiently perform as bifunctional electrocatalysts for both HER and OER. Exfoliation of this layered material via anion intercalation into a few layers further enhanced its activity. In this work, we reported the synthesis of Co/Al LDHs via coprecipitation followed by hydrothermal method and different surfactant-functionalized LDHs (with anionic surfactant: SDS, cationic surfactant: CTAB, and nonionic surfactant: PEG 4000). SDS-modified LDH (s LDH) showed notable stability and competent results in hydrogen evolution in addition to oxygen evolution. The exfoliation of s LDH caused enhancement in the high specific surface area about 6.8 times compared to pristine LDH, as evident from BET data. The onset potential for HER as obtained from the polarization curve for s LDH is −0.41 V versus RHE, with Tafel slope of 67.4 mV/dec. Similarly, OER onset potential and corresponding Tafel slope are 1.53 V versus RHE at 10 mA/cm<sup>2</sup> and 90.2 mV/dec, respectively.</p>","PeriodicalId":141,"journal":{"name":"ChemCatChem","volume":"17 3","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemCatChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cctc.202401377","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Layered double hydroxides (LDHs) have recently attracted much attention in the scientific community as a prominent catalyst for oxygen evolution reaction (OER) because they are economical, extremely stable, and highly active. Literature on LDH alone and their hybrids for catalyzing water oxidation are readily available, but LDH catalyzing hydrogen evolution reaction (HER) is meager. Here, we synthesized Co/Al-based LDH systems that efficiently perform as bifunctional electrocatalysts for both HER and OER. Exfoliation of this layered material via anion intercalation into a few layers further enhanced its activity. In this work, we reported the synthesis of Co/Al LDHs via coprecipitation followed by hydrothermal method and different surfactant-functionalized LDHs (with anionic surfactant: SDS, cationic surfactant: CTAB, and nonionic surfactant: PEG 4000). SDS-modified LDH (s LDH) showed notable stability and competent results in hydrogen evolution in addition to oxygen evolution. The exfoliation of s LDH caused enhancement in the high specific surface area about 6.8 times compared to pristine LDH, as evident from BET data. The onset potential for HER as obtained from the polarization curve for s LDH is −0.41 V versus RHE, with Tafel slope of 67.4 mV/dec. Similarly, OER onset potential and corresponding Tafel slope are 1.53 V versus RHE at 10 mA/cm2 and 90.2 mV/dec, respectively.
期刊介绍:
With an impact factor of 4.495 (2018), ChemCatChem is one of the premier journals in the field of catalysis. The journal provides primary research papers and critical secondary information on heterogeneous, homogeneous and bio- and nanocatalysis. The journal is well placed to strengthen cross-communication within between these communities. Its authors and readers come from academia, the chemical industry, and government laboratories across the world. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies, and is supported by the German Catalysis Society.