A comprehensive review of hydrogel strategies for repairing peripheral nerve injuries

Brain-X Pub Date : 2025-02-08 DOI:10.1002/brx2.70012
Shicheng Jia, Hongfa Zhou, Jiayou Chen, Jiashan Lin, Xinlei Zhu, Jian Weng, Wei Li, Fei Yu
{"title":"A comprehensive review of hydrogel strategies for repairing peripheral nerve injuries","authors":"Shicheng Jia,&nbsp;Hongfa Zhou,&nbsp;Jiayou Chen,&nbsp;Jiashan Lin,&nbsp;Xinlei Zhu,&nbsp;Jian Weng,&nbsp;Wei Li,&nbsp;Fei Yu","doi":"10.1002/brx2.70012","DOIUrl":null,"url":null,"abstract":"<p>As an etiological factor underlying physical and mental disability in humans, peripheral nerve injuries (PNIs) can induce pain, sensory impairment, and disability. Despite their regenerative ability, peripheral nerves cannot self-repair after severe defects. While nerve grafting is the gold standard for the treatment of PNIs, it is limited by graft versus host reactions, surgical complications, and limited donor nerves. As the field of material science continues to develop, hydrogels have been proposed for use in PNI repair after their biomodification, targeted modification, or loading with biological factors and cells. This article reviewed research advances in hydrogels used for PNI repair, including simple hydrogels and composite functionalized hydrogels loaded with biological factors and cells. Based on the findings from these reviews, we determined that further clarification of the mechanisms of action for hydrogels and loaded biological factors in modulating cellular functions is necessary. In addition, there is a need to further explore the synergistic effect of novel functionalized hydrogels with other biological, physical, or biochemical factors. While clinical trials are still limited, scientific efforts are expected to promote the application of hydrogels in the field of PNI repair.</p>","PeriodicalId":94303,"journal":{"name":"Brain-X","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/brx2.70012","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain-X","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/brx2.70012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As an etiological factor underlying physical and mental disability in humans, peripheral nerve injuries (PNIs) can induce pain, sensory impairment, and disability. Despite their regenerative ability, peripheral nerves cannot self-repair after severe defects. While nerve grafting is the gold standard for the treatment of PNIs, it is limited by graft versus host reactions, surgical complications, and limited donor nerves. As the field of material science continues to develop, hydrogels have been proposed for use in PNI repair after their biomodification, targeted modification, or loading with biological factors and cells. This article reviewed research advances in hydrogels used for PNI repair, including simple hydrogels and composite functionalized hydrogels loaded with biological factors and cells. Based on the findings from these reviews, we determined that further clarification of the mechanisms of action for hydrogels and loaded biological factors in modulating cellular functions is necessary. In addition, there is a need to further explore the synergistic effect of novel functionalized hydrogels with other biological, physical, or biochemical factors. While clinical trials are still limited, scientific efforts are expected to promote the application of hydrogels in the field of PNI repair.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A comprehensive review of hydrogel strategies for repairing peripheral nerve injuries Issue Information VMD-FBCCA classification method for SSVEP brain–computer interfaces Dynamic real-time 3D roadmap: A navigational tool for endovascular recanalization in chronic intracranial arterial occlusion Occupational therapy-based rehabilitation of sciatic nerve pain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1