The Role of Inductive Electric Fields in Shaping the Morphology, Asymmetry, and Energy Content of the Storm-Time Ring Current

IF 2.6 2区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS Journal of Geophysical Research: Space Physics Pub Date : 2025-02-07 DOI:10.1029/2024JA033577
Jianghuai Liu, Raluca Ilie, Michael W. Liemohn, Gábor Tóth
{"title":"The Role of Inductive Electric Fields in Shaping the Morphology, Asymmetry, and Energy Content of the Storm-Time Ring Current","authors":"Jianghuai Liu,&nbsp;Raluca Ilie,&nbsp;Michael W. Liemohn,&nbsp;Gábor Tóth","doi":"10.1029/2024JA033577","DOIUrl":null,"url":null,"abstract":"<p>The inductive component of the magnetospheric electric field, which is associated with the temporal change of magnetic field, provides an additional means of local plasma energization and transport in addition to the electrostatic counterpart. This study examines the detailed response of the inner magnetosphere to inductive electric fields and the associated electric-driven convection corresponding to different solar wind conditions. A novel modeling capability is employed to self-consistently simulate the electromagnetic and plasma environment of the entire magnetospheric cavity. The explicit separation of the electric field by source (inductive vs. electrostatic) and subsequent implementation of inductive effects in the ring current model allow us to investigate, for the first time, the effect of the inductive electric field on the kinetics and evolution of the ring current system. The simulation results presented in this study demonstrate that the inductive component of the electric field is capable of providing an additional source for long-lasting plasma drifts, which in turn significantly alter the trajectories of both thermal and energetic particles. Such changes in the plasma drift, which arise due to the inductive electric fields, further reshape the storm-time ring current morphology and alter the degree of the ring current asymmetry, as well as the timing and the peak of the ion pressure. The total ion energy is increasing at a faster rate than the supply of energetic ions to the ring current, suggesting that the inductive electric field provides effective and accumulative local energization for the trapped ring current population without confining additional particles.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":"130 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JA033577","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JA033577","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The inductive component of the magnetospheric electric field, which is associated with the temporal change of magnetic field, provides an additional means of local plasma energization and transport in addition to the electrostatic counterpart. This study examines the detailed response of the inner magnetosphere to inductive electric fields and the associated electric-driven convection corresponding to different solar wind conditions. A novel modeling capability is employed to self-consistently simulate the electromagnetic and plasma environment of the entire magnetospheric cavity. The explicit separation of the electric field by source (inductive vs. electrostatic) and subsequent implementation of inductive effects in the ring current model allow us to investigate, for the first time, the effect of the inductive electric field on the kinetics and evolution of the ring current system. The simulation results presented in this study demonstrate that the inductive component of the electric field is capable of providing an additional source for long-lasting plasma drifts, which in turn significantly alter the trajectories of both thermal and energetic particles. Such changes in the plasma drift, which arise due to the inductive electric fields, further reshape the storm-time ring current morphology and alter the degree of the ring current asymmetry, as well as the timing and the peak of the ion pressure. The total ion energy is increasing at a faster rate than the supply of energetic ions to the ring current, suggesting that the inductive electric field provides effective and accumulative local energization for the trapped ring current population without confining additional particles.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Geophysical Research: Space Physics
Journal of Geophysical Research: Space Physics Earth and Planetary Sciences-Geophysics
CiteScore
5.30
自引率
35.70%
发文量
570
期刊最新文献
The Role of Inductive Electric Fields in Shaping the Morphology, Asymmetry, and Energy Content of the Storm-Time Ring Current Multi-Event Analysis of STEVE, SAR Arc, and Red/Green Arc at Subauroral Latitudes Using Data From Ground Optical and Radio Instruments and the Arase and Van Allen Probes Satellites The Plasma Proton Environment Within Saturn's F-G Ring Gap as Observed by the Cassini Plasma Spectrometer Ion Mass Spectrometer During Saturn Orbit Insertion Modeling the Magnetospheric 3D X-Ray Emission From SWCX Using a Cusp-Magnetosheath Emissivity Model Simulation of ULF Wave Modulated Electron Precipitation During the 17 March 2015 Storm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1