{"title":"Weakly supervised bounding-box generation for camera-trap image based animal detection","authors":"Puxuan Xie, Renwu Gao, Weizeng Lu, Linlin Shen","doi":"10.1049/cvi2.12332","DOIUrl":null,"url":null,"abstract":"<p>In ecology, deep learning is improving the performance of camera-trap image based wild animal analysis. However, high labelling cost becomes a big challenge, as it requires involvement of huge human annotation. For example, the Snapshot Serengeti (SS) dataset contains over 900,000 images, while only 322,653 contains valid animals, 68,000 volunteers were recruited to provide image level labels such as species, the no. of animals and five behaviour attributes such as standing, resting and moving etc. In contrast, the Gold Standard SS Bounding-Box Coordinates (GSBBC for short) contains only 4011 images for training of object detection algorithms, as the annotation of bounding-box for animals in the image, is much more costive. Such a no. of training images, is obviously insufficient. To address this, the authors propose a method to generate bounding-boxes for a larger dataset using limited manually labelled images. To achieve this, the authors first train a wild animal detector using a small dataset (e.g. GSBBC) that is manually labelled to locate animals in images; then apply this detector to a bigger dataset (e.g. SS) for bounding-box generation; finally, we remove false detections according to the existing label information of the images. Experiments show that detector trained with images whose bounding-boxes are generated using the proposal, outperformed the existing camera-trap image based animal detection, in terms of mean average precision (mAP). Compared with the traditional data augmentation method, our method improved the mAP by 21.3% and 44.9% for rare species, also alleviating the long-tail issue in data distribution. In addition, detectors trained with the proposed method also achieve promising results when applied to classification and counting tasks, which are commonly required in wildlife research.</p>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"19 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12332","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.12332","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In ecology, deep learning is improving the performance of camera-trap image based wild animal analysis. However, high labelling cost becomes a big challenge, as it requires involvement of huge human annotation. For example, the Snapshot Serengeti (SS) dataset contains over 900,000 images, while only 322,653 contains valid animals, 68,000 volunteers were recruited to provide image level labels such as species, the no. of animals and five behaviour attributes such as standing, resting and moving etc. In contrast, the Gold Standard SS Bounding-Box Coordinates (GSBBC for short) contains only 4011 images for training of object detection algorithms, as the annotation of bounding-box for animals in the image, is much more costive. Such a no. of training images, is obviously insufficient. To address this, the authors propose a method to generate bounding-boxes for a larger dataset using limited manually labelled images. To achieve this, the authors first train a wild animal detector using a small dataset (e.g. GSBBC) that is manually labelled to locate animals in images; then apply this detector to a bigger dataset (e.g. SS) for bounding-box generation; finally, we remove false detections according to the existing label information of the images. Experiments show that detector trained with images whose bounding-boxes are generated using the proposal, outperformed the existing camera-trap image based animal detection, in terms of mean average precision (mAP). Compared with the traditional data augmentation method, our method improved the mAP by 21.3% and 44.9% for rare species, also alleviating the long-tail issue in data distribution. In addition, detectors trained with the proposed method also achieve promising results when applied to classification and counting tasks, which are commonly required in wildlife research.
期刊介绍:
IET Computer Vision seeks original research papers in a wide range of areas of computer vision. The vision of the journal is to publish the highest quality research work that is relevant and topical to the field, but not forgetting those works that aim to introduce new horizons and set the agenda for future avenues of research in computer vision.
IET Computer Vision welcomes submissions on the following topics:
Biologically and perceptually motivated approaches to low level vision (feature detection, etc.);
Perceptual grouping and organisation
Representation, analysis and matching of 2D and 3D shape
Shape-from-X
Object recognition
Image understanding
Learning with visual inputs
Motion analysis and object tracking
Multiview scene analysis
Cognitive approaches in low, mid and high level vision
Control in visual systems
Colour, reflectance and light
Statistical and probabilistic models
Face and gesture
Surveillance
Biometrics and security
Robotics
Vehicle guidance
Automatic model aquisition
Medical image analysis and understanding
Aerial scene analysis and remote sensing
Deep learning models in computer vision
Both methodological and applications orientated papers are welcome.
Manuscripts submitted are expected to include a detailed and analytical review of the literature and state-of-the-art exposition of the original proposed research and its methodology, its thorough experimental evaluation, and last but not least, comparative evaluation against relevant and state-of-the-art methods. Submissions not abiding by these minimum requirements may be returned to authors without being sent to review.
Special Issues Current Call for Papers:
Computer Vision for Smart Cameras and Camera Networks - https://digital-library.theiet.org/files/IET_CVI_SC.pdf
Computer Vision for the Creative Industries - https://digital-library.theiet.org/files/IET_CVI_CVCI.pdf