{"title":"Scaling Graph Neural Networks to Large Proteins.","authors":"Justin Airas, Bin Zhang","doi":"10.1021/acs.jctc.4c01420","DOIUrl":null,"url":null,"abstract":"<p><p>Graph neural network (GNN) architectures have emerged as promising force field models, exhibiting high accuracy in predicting complex energies and forces based on atomic identities and Cartesian coordinates. To expand the applicability of GNNs, and machine learning force fields more broadly, optimizing their computational efficiency is critical, especially for large biomolecular systems in classical molecular dynamics simulations. In this study, we address key challenges in existing GNN benchmarks by introducing a dataset, DISPEF, which comprises large, biologically relevant proteins. DISPEF includes 207,454 proteins with sizes up to 12,499 atoms and features diverse chemical environments, spanning folded and disordered regions. The implicit solvation free energies, used as training targets, represent a particularly challenging case due to their many-body nature, providing a stringent test for evaluating the expressiveness of machine learning models. We benchmark the performance of seven GNNs on DISPEF, emphasizing the importance of directly accounting for long-range interactions to enhance model transferability. Additionally, we present a novel multiscale architecture, termed Schake, which delivers transferable and computationally efficient energy and force predictions for large proteins. Our findings offer valuable insights and tools for advancing GNNs in protein modeling applications.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.4c01420","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Graph neural network (GNN) architectures have emerged as promising force field models, exhibiting high accuracy in predicting complex energies and forces based on atomic identities and Cartesian coordinates. To expand the applicability of GNNs, and machine learning force fields more broadly, optimizing their computational efficiency is critical, especially for large biomolecular systems in classical molecular dynamics simulations. In this study, we address key challenges in existing GNN benchmarks by introducing a dataset, DISPEF, which comprises large, biologically relevant proteins. DISPEF includes 207,454 proteins with sizes up to 12,499 atoms and features diverse chemical environments, spanning folded and disordered regions. The implicit solvation free energies, used as training targets, represent a particularly challenging case due to their many-body nature, providing a stringent test for evaluating the expressiveness of machine learning models. We benchmark the performance of seven GNNs on DISPEF, emphasizing the importance of directly accounting for long-range interactions to enhance model transferability. Additionally, we present a novel multiscale architecture, termed Schake, which delivers transferable and computationally efficient energy and force predictions for large proteins. Our findings offer valuable insights and tools for advancing GNNs in protein modeling applications.
期刊介绍:
The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.