Water Is Cool: Advanced Phonon Dynamics in Ice Ih and Ice XI via Machine Learning Potentials and Quantum Nuclear Vibrations.

IF 5.7 1区 化学 Q2 CHEMISTRY, PHYSICAL Journal of Chemical Theory and Computation Pub Date : 2025-02-07 DOI:10.1021/acs.jctc.4c01582
Aleksandar Živković, Umberto Terranova, Nora H de Leeuw
{"title":"Water Is Cool: Advanced Phonon Dynamics in Ice Ih and Ice XI via Machine Learning Potentials and Quantum Nuclear Vibrations.","authors":"Aleksandar Živković, Umberto Terranova, Nora H de Leeuw","doi":"10.1021/acs.jctc.4c01582","DOIUrl":null,"url":null,"abstract":"<p><p>Low-dimensional water, despite the relative simplicity of its constituents, exhibits a vast range of phenomena that are of central importance in natural sciences. A large number of bulk as well as nanoscale polymorphs offer engineering possibilities for technological applications such as desalinization, drug delivery, or biological interfacing. However, little is known about the stability of such structures. Therefore, in this study, we employ an array of state-of-the-art computational techniques to study the vibrational properties of ice Ih and XI in their bulk and thin film forms in order to elucidate their structural stability and dynamic behavior. An efficient workflow, consisting of quantum mechanical simulations (based on density functional theory) and machine learning interatomic potentials (MTPs) coupled to temperature-dependent effective potentials (TDEP) and classical molecular dynamics, was verified necessary to capture the temperature-dependent stabilization of the phonons in bulk ice Ih and XI. Anharmonicity and nuclear quantum effects, incorporated in an efficient way through a quantum thermal bath technique, were found crucial to dynamically stabilize low-frequency lattice modes and high-frequency vibrational stretching involving hydrogen. We have identified three novel thin film structures that retain their stability up to at least 250 K and have shed light on their phonon characteristics. In addition, our examination of the Raman spectrum of ice underscores the shortcomings of predicting vibrational properties when relying entirely on the harmonic approximation or purely anharmonic effects. The corrected redistribution of vibrational intensities is found to be achieved only upon inclusion of quantum nuclear vibrations. This was found to be even more crucial for low-dimensional thin film (2D) structures. Overall, our findings demonstrate the significance of joining advanced computational methodologies in unraveling the intricate vibrational dynamics of crystalline ice materials, offering valuable insights into their thermodynamic and structural properties. Furthermore, we suggest a procedure based on MTPs coupled to a quantum thermal bath for the computationally efficient probing of nuclear effects in ice structures, although equally applicable to any other system.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.4c01582","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Low-dimensional water, despite the relative simplicity of its constituents, exhibits a vast range of phenomena that are of central importance in natural sciences. A large number of bulk as well as nanoscale polymorphs offer engineering possibilities for technological applications such as desalinization, drug delivery, or biological interfacing. However, little is known about the stability of such structures. Therefore, in this study, we employ an array of state-of-the-art computational techniques to study the vibrational properties of ice Ih and XI in their bulk and thin film forms in order to elucidate their structural stability and dynamic behavior. An efficient workflow, consisting of quantum mechanical simulations (based on density functional theory) and machine learning interatomic potentials (MTPs) coupled to temperature-dependent effective potentials (TDEP) and classical molecular dynamics, was verified necessary to capture the temperature-dependent stabilization of the phonons in bulk ice Ih and XI. Anharmonicity and nuclear quantum effects, incorporated in an efficient way through a quantum thermal bath technique, were found crucial to dynamically stabilize low-frequency lattice modes and high-frequency vibrational stretching involving hydrogen. We have identified three novel thin film structures that retain their stability up to at least 250 K and have shed light on their phonon characteristics. In addition, our examination of the Raman spectrum of ice underscores the shortcomings of predicting vibrational properties when relying entirely on the harmonic approximation or purely anharmonic effects. The corrected redistribution of vibrational intensities is found to be achieved only upon inclusion of quantum nuclear vibrations. This was found to be even more crucial for low-dimensional thin film (2D) structures. Overall, our findings demonstrate the significance of joining advanced computational methodologies in unraveling the intricate vibrational dynamics of crystalline ice materials, offering valuable insights into their thermodynamic and structural properties. Furthermore, we suggest a procedure based on MTPs coupled to a quantum thermal bath for the computationally efficient probing of nuclear effects in ice structures, although equally applicable to any other system.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Chemical Theory and Computation
Journal of Chemical Theory and Computation 化学-物理:原子、分子和化学物理
CiteScore
9.90
自引率
16.40%
发文量
568
审稿时长
1 months
期刊介绍: The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.
期刊最新文献
Linear-Scaling Local Natural Orbital-Based Full Triples Treatment in Coupled-Cluster Theory. Linnett is Back: Chemical Bonding through the Lens of Born Maxima. Efficient Energy Measurement of Chemical Systems via One-Particle Reduced Density Matrix: A NOF-VQE Approach for Optimized Sampling. Structural Heterogeneity of Intermediate States Facilitates CRIPT Peptide Binding to the PDZ3 Domain: Insights from Molecular Dynamics and Markov State Model Analysis. Accurate Lattice Free Energies of Packing Polymorphs from Probabilistic Generative Models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1