Jiahao Zhang, Kaiyu Jin, Yichen Xiao, Yifei Feng, Da Lu, Mai Chen, Mengran Sun, Dengyu Wang, Cheng Jin, Zhiling Li, Yiming Wang
{"title":"Spatially Controlled Self-Assembly of Supramolecular Hydrogels Enabled by Light-Triggered Catalysis.","authors":"Jiahao Zhang, Kaiyu Jin, Yichen Xiao, Yifei Feng, Da Lu, Mai Chen, Mengran Sun, Dengyu Wang, Cheng Jin, Zhiling Li, Yiming Wang","doi":"10.1002/marc.202401156","DOIUrl":null,"url":null,"abstract":"<p><p>Spatial control over supramolecular self-assembly prevails in living system, yet remains difficult to replicate in synthetic scenarios. Here, on the basis of a hydrazone formation-mediated supramolecular hydrogelation system, access to patterning of supramolecular hydrogels is demonstrated via a light-triggered catalysis strategy. A photoacid generator that can produce protons in aqueous solutions upon irradiation is employed. The generated protons lead to a drop in pH of around three units (initial pH 7.0), effectively accelerating the formation and self-assembly of the hydrazone gelators. Because of the light-triggered catalysis, the hydrogelation samples in the presence of photoacid generator show lower critical gelation concentration, higher stiffness, and denser networks. Importantly, by performing selective irradiation using differently shaped masks, various spatially resolved supramolecular hydrogels following the shapes of the masks are fabricated. The concept of using light-triggered catalysis to realize spatial control over supramolecular self-assembly provides an alternative approach toward bottom-up fabrication of structured soft materials for various applications such as tissue engineering, single cell manipulation, and biosensing.</p>","PeriodicalId":205,"journal":{"name":"Macromolecular Rapid Communications","volume":" ","pages":"e2401156"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Rapid Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/marc.202401156","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Spatial control over supramolecular self-assembly prevails in living system, yet remains difficult to replicate in synthetic scenarios. Here, on the basis of a hydrazone formation-mediated supramolecular hydrogelation system, access to patterning of supramolecular hydrogels is demonstrated via a light-triggered catalysis strategy. A photoacid generator that can produce protons in aqueous solutions upon irradiation is employed. The generated protons lead to a drop in pH of around three units (initial pH 7.0), effectively accelerating the formation and self-assembly of the hydrazone gelators. Because of the light-triggered catalysis, the hydrogelation samples in the presence of photoacid generator show lower critical gelation concentration, higher stiffness, and denser networks. Importantly, by performing selective irradiation using differently shaped masks, various spatially resolved supramolecular hydrogels following the shapes of the masks are fabricated. The concept of using light-triggered catalysis to realize spatial control over supramolecular self-assembly provides an alternative approach toward bottom-up fabrication of structured soft materials for various applications such as tissue engineering, single cell manipulation, and biosensing.
期刊介绍:
Macromolecular Rapid Communications publishes original research in polymer science, ranging from chemistry and physics of polymers to polymers in materials science and life sciences.