Spatially Controlled Self-Assembly of Supramolecular Hydrogels Enabled by Light-Triggered Catalysis.

IF 4.2 3区 化学 Q2 POLYMER SCIENCE Macromolecular Rapid Communications Pub Date : 2025-02-07 DOI:10.1002/marc.202401156
Jiahao Zhang, Kaiyu Jin, Yichen Xiao, Yifei Feng, Da Lu, Mai Chen, Mengran Sun, Dengyu Wang, Cheng Jin, Zhiling Li, Yiming Wang
{"title":"Spatially Controlled Self-Assembly of Supramolecular Hydrogels Enabled by Light-Triggered Catalysis.","authors":"Jiahao Zhang, Kaiyu Jin, Yichen Xiao, Yifei Feng, Da Lu, Mai Chen, Mengran Sun, Dengyu Wang, Cheng Jin, Zhiling Li, Yiming Wang","doi":"10.1002/marc.202401156","DOIUrl":null,"url":null,"abstract":"<p><p>Spatial control over supramolecular self-assembly prevails in living system, yet remains difficult to replicate in synthetic scenarios. Here, on the basis of a hydrazone formation-mediated supramolecular hydrogelation system, access to patterning of supramolecular hydrogels is demonstrated via a light-triggered catalysis strategy. A photoacid generator that can produce protons in aqueous solutions upon irradiation is employed. The generated protons lead to a drop in pH of around three units (initial pH 7.0), effectively accelerating the formation and self-assembly of the hydrazone gelators. Because of the light-triggered catalysis, the hydrogelation samples in the presence of photoacid generator show lower critical gelation concentration, higher stiffness, and denser networks. Importantly, by performing selective irradiation using differently shaped masks, various spatially resolved supramolecular hydrogels following the shapes of the masks are fabricated. The concept of using light-triggered catalysis to realize spatial control over supramolecular self-assembly provides an alternative approach toward bottom-up fabrication of structured soft materials for various applications such as tissue engineering, single cell manipulation, and biosensing.</p>","PeriodicalId":205,"journal":{"name":"Macromolecular Rapid Communications","volume":" ","pages":"e2401156"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Rapid Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/marc.202401156","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Spatial control over supramolecular self-assembly prevails in living system, yet remains difficult to replicate in synthetic scenarios. Here, on the basis of a hydrazone formation-mediated supramolecular hydrogelation system, access to patterning of supramolecular hydrogels is demonstrated via a light-triggered catalysis strategy. A photoacid generator that can produce protons in aqueous solutions upon irradiation is employed. The generated protons lead to a drop in pH of around three units (initial pH 7.0), effectively accelerating the formation and self-assembly of the hydrazone gelators. Because of the light-triggered catalysis, the hydrogelation samples in the presence of photoacid generator show lower critical gelation concentration, higher stiffness, and denser networks. Importantly, by performing selective irradiation using differently shaped masks, various spatially resolved supramolecular hydrogels following the shapes of the masks are fabricated. The concept of using light-triggered catalysis to realize spatial control over supramolecular self-assembly provides an alternative approach toward bottom-up fabrication of structured soft materials for various applications such as tissue engineering, single cell manipulation, and biosensing.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Macromolecular Rapid Communications
Macromolecular Rapid Communications 工程技术-高分子科学
CiteScore
7.70
自引率
6.50%
发文量
477
审稿时长
1.4 months
期刊介绍: Macromolecular Rapid Communications publishes original research in polymer science, ranging from chemistry and physics of polymers to polymers in materials science and life sciences.
期刊最新文献
Fabrication of a High Proton-Conducting Sulfonated Fe-Metal Organic Framework-Polytriazole Composite Membranes: Study of Proton Exchange Membrane Properties. Rational Design of Covalent Organic Frameworks for Photocatalytic Hydrogen Peroxide Production. Renewable Phenolic Resins Based on Nitrogen-Coordinated Cyclic Boronic Ester Bonds. A Self-Assembled Amino Acid Hydrogel for Immobilization and Protection of Enzymes. Achieving High-Strength Polymer Adhesion Through Bond Exchange at the Interphase.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1