{"title":"3D Printing of Solid Electrolyte and the Application in All-Solid-State Batteries.","authors":"Zhantong Tu, Kaiqi Chen, Sijie Liu, Xin Wu","doi":"10.1002/smtd.202401912","DOIUrl":null,"url":null,"abstract":"<p><p>The inherent risks of fluid leakage, combustion, and explosive reactions constitute major impediments to the widespread commercial deployment of lithium battery technologies. To solve these problems, solid-state electrolytes presenting the advantages of non-leakage, good thermal stability, non-volatilization, low spontaneous combustion or explosion risk have been proposed. However, one of the key issues for solid electrolytes is the ultra-low ionic conductivity. To improve the ionic conductivity, new materials are being developed with complex procedures or more exotic, high-cost materials. Actually, the performance of solid electrolytes can be strategically enhanced through rational structural design and customized fabrication strategies. Recently, the combination of 3D printing techniques with solid-state batteries has been regarded as an efficient solution for the future energy crisis, and therefore, much research effort has been spent on it. This article reviewed the research advances around the integration of 3D printing with solid electrolytes. The advantages of various solid electrolytes and major 3D printing techniques are summarized at first. Subsequently, this review examines the integration of 3D printing technologies in the fabrication of diverse solid electrolytes, analyzing their implementation through case studies of solid-state battery applications. Finally, the challenges and prospective for future 3D printing of solid electrolytes are outlined.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401912"},"PeriodicalIF":10.7000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202401912","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The inherent risks of fluid leakage, combustion, and explosive reactions constitute major impediments to the widespread commercial deployment of lithium battery technologies. To solve these problems, solid-state electrolytes presenting the advantages of non-leakage, good thermal stability, non-volatilization, low spontaneous combustion or explosion risk have been proposed. However, one of the key issues for solid electrolytes is the ultra-low ionic conductivity. To improve the ionic conductivity, new materials are being developed with complex procedures or more exotic, high-cost materials. Actually, the performance of solid electrolytes can be strategically enhanced through rational structural design and customized fabrication strategies. Recently, the combination of 3D printing techniques with solid-state batteries has been regarded as an efficient solution for the future energy crisis, and therefore, much research effort has been spent on it. This article reviewed the research advances around the integration of 3D printing with solid electrolytes. The advantages of various solid electrolytes and major 3D printing techniques are summarized at first. Subsequently, this review examines the integration of 3D printing technologies in the fabrication of diverse solid electrolytes, analyzing their implementation through case studies of solid-state battery applications. Finally, the challenges and prospective for future 3D printing of solid electrolytes are outlined.
Small MethodsMaterials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍:
Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques.
With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community.
The online ISSN for Small Methods is 2366-9608.