Bo Guan, Guangdi Chu, Ziying Wang, Jianmin Li, Bo Yi
{"title":"Instance-level semantic segmentation of nuclei based on multimodal structure encoding.","authors":"Bo Guan, Guangdi Chu, Ziying Wang, Jianmin Li, Bo Yi","doi":"10.1186/s12859-025-06066-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Accurate segmentation and classification of cell nuclei are crucial for histopathological image analysis. However, existing deep neural network-based methods often struggle to capture complex morphological features and global spatial distributions of cell nuclei due to their reliance on local receptive fields.</p><p><strong>Methods: </strong>This study proposes a graph neural structure encoding framework based on a vision-language model. The framework incorporates: (1) A multi-scale feature fusion and knowledge distillation module utilizing the Contrastive Language-Image Pre-training (CLIP) model's image encoder; (2) A method to transform morphological features of cells into textual descriptions for semantic representation; and (3) A graph neural network approach to learn spatial relationships and contextual information between cell nuclei.</p><p><strong>Results: </strong>Experimental results demonstrate that the proposed method significantly improves the accuracy of cell nucleus segmentation and classification compared to existing approaches. The framework effectively captures complex nuclear structures and global distribution features, leading to enhanced performance in histopathological image analysis.</p><p><strong>Conclusions: </strong>By deeply mining the morphological features of cell nuclei and their spatial topological relationships, our graph neural structure encoding framework achieves high-precision nuclear segmentation and classification. This approach shows significant potential for enhancing histopathological image analysis, potentially leading to more accurate diagnoses and improved understanding of cellular structures in pathological tissues.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"26 1","pages":"42"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11804060/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-025-06066-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Accurate segmentation and classification of cell nuclei are crucial for histopathological image analysis. However, existing deep neural network-based methods often struggle to capture complex morphological features and global spatial distributions of cell nuclei due to their reliance on local receptive fields.
Methods: This study proposes a graph neural structure encoding framework based on a vision-language model. The framework incorporates: (1) A multi-scale feature fusion and knowledge distillation module utilizing the Contrastive Language-Image Pre-training (CLIP) model's image encoder; (2) A method to transform morphological features of cells into textual descriptions for semantic representation; and (3) A graph neural network approach to learn spatial relationships and contextual information between cell nuclei.
Results: Experimental results demonstrate that the proposed method significantly improves the accuracy of cell nucleus segmentation and classification compared to existing approaches. The framework effectively captures complex nuclear structures and global distribution features, leading to enhanced performance in histopathological image analysis.
Conclusions: By deeply mining the morphological features of cell nuclei and their spatial topological relationships, our graph neural structure encoding framework achieves high-precision nuclear segmentation and classification. This approach shows significant potential for enhancing histopathological image analysis, potentially leading to more accurate diagnoses and improved understanding of cellular structures in pathological tissues.
期刊介绍:
BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology.
BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.