Disrupting AGR2/IGF1 paracrine and reciprocal signaling for pancreatic cancer therapy.

IF 11.7 1区 医学 Q1 CELL BIOLOGY Cell Reports Medicine Pub Date : 2025-02-05 DOI:10.1016/j.xcrm.2024.101927
Hongzhen Li, Zhiheng Zhang, Zhao Shi, Siqi Zhou, Shuang Nie, Yuanyuan Yu, Lingling Zhang, Yifeng Sun, Chao Fang, Jingxiong Hu, Yiqi Niu, Kathleen Schuck, Lei Wang, Kuirong Jiang, Zipeng Lu, Christoph Kahlert, Susanne Roth, Martin Loos, Ingrid Herr, Yoshiaki Sunami, Jörg Kleeff, Helmut Friess, Maximilian Reichert, Zahra Dantes, Xiaoping Zou, Christoph W Michalski, Shanshan Shen, Bo Kong
{"title":"Disrupting AGR2/IGF1 paracrine and reciprocal signaling for pancreatic cancer therapy.","authors":"Hongzhen Li, Zhiheng Zhang, Zhao Shi, Siqi Zhou, Shuang Nie, Yuanyuan Yu, Lingling Zhang, Yifeng Sun, Chao Fang, Jingxiong Hu, Yiqi Niu, Kathleen Schuck, Lei Wang, Kuirong Jiang, Zipeng Lu, Christoph Kahlert, Susanne Roth, Martin Loos, Ingrid Herr, Yoshiaki Sunami, Jörg Kleeff, Helmut Friess, Maximilian Reichert, Zahra Dantes, Xiaoping Zou, Christoph W Michalski, Shanshan Shen, Bo Kong","doi":"10.1016/j.xcrm.2024.101927","DOIUrl":null,"url":null,"abstract":"<p><p>Pancreatic ductal adenocarcinoma (PDAC) is highly aggressive and characterized by pronounced desmoplasia. PDAC cells communicate with cancer-associated fibroblasts (CAFs) in a paracrine/reciprocal manner, substantially promoting tumor growth and desmoplastic responses. This study highlights the critical role of anterior gradient 2 (AGR2), an endoplasmic reticulum protein disulfide isomerase, secreted by PDAC cells to activate CAFs via the Wnt signaling pathway. Activated CAFs, in turn, secrete insulin-like growth factor 1 (IGF1), which enhances AGR2 expression and secretion in PDAC cells through the IGF1 receptor (IGF1R)/c-JUN axis. Within PDAC cells, AGR2 acts as a thioredoxin, aiding the folding and cell surface presentation of IGF1R, essential for PDAC's response to CAF-derived IGF1. This reciprocal AGR2/IGF1 signaling loop intensifies desmoplasia, immunosuppression, and tumorigenesis, creating a harmful feedback loop. Targeting both pathways disrupts this interaction, reduces desmoplasia, and restores anti-tumor immunity in preclinical models, offering a promising therapeutic strategy against PDAC.</p>","PeriodicalId":9822,"journal":{"name":"Cell Reports Medicine","volume":" ","pages":"101927"},"PeriodicalIF":11.7000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.xcrm.2024.101927","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is highly aggressive and characterized by pronounced desmoplasia. PDAC cells communicate with cancer-associated fibroblasts (CAFs) in a paracrine/reciprocal manner, substantially promoting tumor growth and desmoplastic responses. This study highlights the critical role of anterior gradient 2 (AGR2), an endoplasmic reticulum protein disulfide isomerase, secreted by PDAC cells to activate CAFs via the Wnt signaling pathway. Activated CAFs, in turn, secrete insulin-like growth factor 1 (IGF1), which enhances AGR2 expression and secretion in PDAC cells through the IGF1 receptor (IGF1R)/c-JUN axis. Within PDAC cells, AGR2 acts as a thioredoxin, aiding the folding and cell surface presentation of IGF1R, essential for PDAC's response to CAF-derived IGF1. This reciprocal AGR2/IGF1 signaling loop intensifies desmoplasia, immunosuppression, and tumorigenesis, creating a harmful feedback loop. Targeting both pathways disrupts this interaction, reduces desmoplasia, and restores anti-tumor immunity in preclinical models, offering a promising therapeutic strategy against PDAC.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell Reports Medicine
Cell Reports Medicine Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
15.00
自引率
1.40%
发文量
231
审稿时长
40 days
期刊介绍: Cell Reports Medicine is an esteemed open-access journal by Cell Press that publishes groundbreaking research in translational and clinical biomedical sciences, influencing human health and medicine. Our journal ensures wide visibility and accessibility, reaching scientists and clinicians across various medical disciplines. We publish original research that spans from intriguing human biology concepts to all aspects of clinical work. We encourage submissions that introduce innovative ideas, forging new paths in clinical research and practice. We also welcome studies that provide vital information, enhancing our understanding of current standards of care in diagnosis, treatment, and prognosis. This encompasses translational studies, clinical trials (including long-term follow-ups), genomics, biomarker discovery, and technological advancements that contribute to diagnostics, treatment, and healthcare. Additionally, studies based on vertebrate model organisms are within the scope of the journal, as long as they directly relate to human health and disease.
期刊最新文献
Disrupting AGR2/IGF1 paracrine and reciprocal signaling for pancreatic cancer therapy. Bioengineering of a human iPSC-derived vascularized endocrine pancreas for type 1 diabetes. Combined inhibition of focal adhesion kinase and RAF/MEK elicits synergistic inhibition of melanoma growth and reduces metastases. Homologous recombination repair status in metastatic prostate cancer by next-generation sequencing and functional immunofluorescence. The metabolic and cardiovascular effects of amphetamine are partially mediated by the central melanocortin system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1