{"title":"HSC70 coordinates COP9 signalosome and SCF ubiquitin ligase activity to enable a prompt stress response.","authors":"Shunsuke Nishimura, Hidetaka Kioka, Shan Ding, Hideyuki Hakui, Haruki Shinomiya, Kazuya Tanabe, Tatsuro Hitsumoto, Ken Matsuoka, Hisakazu Kato, Osamu Tsukamoto, Yoshihiro Asano, Seiji Takashima, Radoslav I Enchev, Yasushi Sakata","doi":"10.1038/s44319-025-00376-x","DOIUrl":null,"url":null,"abstract":"<p><p>The SCF (SKP1/CUL1/F-box protein) ubiquitin ligase complex plays a protective role against external stress, such as ultraviolet irradiation. The emergence of substrates activates SCF through neddylation, the covalent attachment of ubiquitin-like protein NEDD8 to CUL1. After substrate degradation, SCF is inactivated through deneddylation by COP9-signalosome (CSN), a solo enzyme that can deneddylate SCF. How the activity of CSN and SCF is coordinated within the cell is not fully understood. Here, we find that heat-shock cognate 70 (HSC70) chaperone coordinates SCF and CSN activation dependent on the neddylation status and substrate availability. Under basal conditions and low substrate availability, HCS70 directly enhances CSN deneddylation activity, thereby reducing SCF activity. Under SCF-activated conditions, HSC70 interacts with neddylated SCF and enhances its ubiquitination activity. The alternative interaction between HSC70 and CSN or neddylated SCF is regulated by the presence or absence of SCF substrates. The knockdown of HSC70 decreases SCF-mediated substrate ubiquitination, resulting in vulnerability against ultraviolet irradiation. Our work demonstrates the pivotal role of HSC70 in the alternative activation of CSN deneddylation and SCF substrate ubiquitination, which enables a prompt stress response.</p>","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":" ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44319-025-00376-x","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The SCF (SKP1/CUL1/F-box protein) ubiquitin ligase complex plays a protective role against external stress, such as ultraviolet irradiation. The emergence of substrates activates SCF through neddylation, the covalent attachment of ubiquitin-like protein NEDD8 to CUL1. After substrate degradation, SCF is inactivated through deneddylation by COP9-signalosome (CSN), a solo enzyme that can deneddylate SCF. How the activity of CSN and SCF is coordinated within the cell is not fully understood. Here, we find that heat-shock cognate 70 (HSC70) chaperone coordinates SCF and CSN activation dependent on the neddylation status and substrate availability. Under basal conditions and low substrate availability, HCS70 directly enhances CSN deneddylation activity, thereby reducing SCF activity. Under SCF-activated conditions, HSC70 interacts with neddylated SCF and enhances its ubiquitination activity. The alternative interaction between HSC70 and CSN or neddylated SCF is regulated by the presence or absence of SCF substrates. The knockdown of HSC70 decreases SCF-mediated substrate ubiquitination, resulting in vulnerability against ultraviolet irradiation. Our work demonstrates the pivotal role of HSC70 in the alternative activation of CSN deneddylation and SCF substrate ubiquitination, which enables a prompt stress response.
期刊介绍:
EMBO Reports is a scientific journal that specializes in publishing research articles in the fields of molecular biology, cell biology, and developmental biology. The journal is known for its commitment to publishing high-quality, impactful research that provides novel physiological and functional insights. These insights are expected to be supported by robust evidence, with independent lines of inquiry validating the findings.
The journal's scope includes both long and short-format papers, catering to different types of research contributions. It values studies that:
Communicate major findings: Articles that report significant discoveries or advancements in the understanding of biological processes at the molecular, cellular, and developmental levels.
Confirm important findings: Research that validates or supports existing knowledge in the field, reinforcing the reliability of previous studies.
Refute prominent claims: Studies that challenge or disprove widely accepted ideas or hypotheses in the biosciences, contributing to the correction and evolution of scientific understanding.
Present null data: Papers that report negative results or findings that do not support a particular hypothesis, which are crucial for the scientific process as they help to refine or redirect research efforts.
EMBO Reports is dedicated to maintaining high standards of scientific rigor and integrity, ensuring that the research it publishes contributes meaningfully to the advancement of knowledge in the life sciences. By covering a broad spectrum of topics and encouraging the publication of both positive and negative results, the journal plays a vital role in promoting a comprehensive and balanced view of scientific inquiry.