HSC70 coordinates COP9 signalosome and SCF ubiquitin ligase activity to enable a prompt stress response.

IF 6.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY EMBO Reports Pub Date : 2025-02-06 DOI:10.1038/s44319-025-00376-x
Shunsuke Nishimura, Hidetaka Kioka, Shan Ding, Hideyuki Hakui, Haruki Shinomiya, Kazuya Tanabe, Tatsuro Hitsumoto, Ken Matsuoka, Hisakazu Kato, Osamu Tsukamoto, Yoshihiro Asano, Seiji Takashima, Radoslav I Enchev, Yasushi Sakata
{"title":"HSC70 coordinates COP9 signalosome and SCF ubiquitin ligase activity to enable a prompt stress response.","authors":"Shunsuke Nishimura, Hidetaka Kioka, Shan Ding, Hideyuki Hakui, Haruki Shinomiya, Kazuya Tanabe, Tatsuro Hitsumoto, Ken Matsuoka, Hisakazu Kato, Osamu Tsukamoto, Yoshihiro Asano, Seiji Takashima, Radoslav I Enchev, Yasushi Sakata","doi":"10.1038/s44319-025-00376-x","DOIUrl":null,"url":null,"abstract":"<p><p>The SCF (SKP1/CUL1/F-box protein) ubiquitin ligase complex plays a protective role against external stress, such as ultraviolet irradiation. The emergence of substrates activates SCF through neddylation, the covalent attachment of ubiquitin-like protein NEDD8 to CUL1. After substrate degradation, SCF is inactivated through deneddylation by COP9-signalosome (CSN), a solo enzyme that can deneddylate SCF. How the activity of CSN and SCF is coordinated within the cell is not fully understood. Here, we find that heat-shock cognate 70 (HSC70) chaperone coordinates SCF and CSN activation dependent on the neddylation status and substrate availability. Under basal conditions and low substrate availability, HCS70 directly enhances CSN deneddylation activity, thereby reducing SCF activity. Under SCF-activated conditions, HSC70 interacts with neddylated SCF and enhances its ubiquitination activity. The alternative interaction between HSC70 and CSN or neddylated SCF is regulated by the presence or absence of SCF substrates. The knockdown of HSC70 decreases SCF-mediated substrate ubiquitination, resulting in vulnerability against ultraviolet irradiation. Our work demonstrates the pivotal role of HSC70 in the alternative activation of CSN deneddylation and SCF substrate ubiquitination, which enables a prompt stress response.</p>","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":" ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44319-025-00376-x","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The SCF (SKP1/CUL1/F-box protein) ubiquitin ligase complex plays a protective role against external stress, such as ultraviolet irradiation. The emergence of substrates activates SCF through neddylation, the covalent attachment of ubiquitin-like protein NEDD8 to CUL1. After substrate degradation, SCF is inactivated through deneddylation by COP9-signalosome (CSN), a solo enzyme that can deneddylate SCF. How the activity of CSN and SCF is coordinated within the cell is not fully understood. Here, we find that heat-shock cognate 70 (HSC70) chaperone coordinates SCF and CSN activation dependent on the neddylation status and substrate availability. Under basal conditions and low substrate availability, HCS70 directly enhances CSN deneddylation activity, thereby reducing SCF activity. Under SCF-activated conditions, HSC70 interacts with neddylated SCF and enhances its ubiquitination activity. The alternative interaction between HSC70 and CSN or neddylated SCF is regulated by the presence or absence of SCF substrates. The knockdown of HSC70 decreases SCF-mediated substrate ubiquitination, resulting in vulnerability against ultraviolet irradiation. Our work demonstrates the pivotal role of HSC70 in the alternative activation of CSN deneddylation and SCF substrate ubiquitination, which enables a prompt stress response.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
EMBO Reports
EMBO Reports 生物-生化与分子生物学
CiteScore
11.20
自引率
1.30%
发文量
267
审稿时长
1 months
期刊介绍: EMBO Reports is a scientific journal that specializes in publishing research articles in the fields of molecular biology, cell biology, and developmental biology. The journal is known for its commitment to publishing high-quality, impactful research that provides novel physiological and functional insights. These insights are expected to be supported by robust evidence, with independent lines of inquiry validating the findings. The journal's scope includes both long and short-format papers, catering to different types of research contributions. It values studies that: Communicate major findings: Articles that report significant discoveries or advancements in the understanding of biological processes at the molecular, cellular, and developmental levels. Confirm important findings: Research that validates or supports existing knowledge in the field, reinforcing the reliability of previous studies. Refute prominent claims: Studies that challenge or disprove widely accepted ideas or hypotheses in the biosciences, contributing to the correction and evolution of scientific understanding. Present null data: Papers that report negative results or findings that do not support a particular hypothesis, which are crucial for the scientific process as they help to refine or redirect research efforts. EMBO Reports is dedicated to maintaining high standards of scientific rigor and integrity, ensuring that the research it publishes contributes meaningfully to the advancement of knowledge in the life sciences. By covering a broad spectrum of topics and encouraging the publication of both positive and negative results, the journal plays a vital role in promoting a comprehensive and balanced view of scientific inquiry. 
期刊最新文献
Haploinsufficient phenotypes promote selection of PTEN and ARID1A-deficient clones in human colon. HSC70 coordinates COP9 signalosome and SCF ubiquitin ligase activity to enable a prompt stress response. Immune cells adapt to confined environments in vivo to optimise nuclear plasticity for migration. Type-2 innate signals are dispensable for skeletal muscle regeneration and pathology linked to Duchenne muscular dystrophy. Exonuclease action of replicative polymerase gamma drives damage-induced mitochondrial DNA clearance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1