Metagenomic next-generation sequencing for lung cancer low respiratory tract infections diagnosis and characterizing microbiome features.

IF 4.6 2区 医学 Q2 IMMUNOLOGY Frontiers in Cellular and Infection Microbiology Pub Date : 2025-01-23 eCollection Date: 2024-01-01 DOI:10.3389/fcimb.2024.1518199
Yao Liu, Bohan Yang, Qi Qi, Shijie Liu, Yiheng Du, Linlin Ye, Qiong Zhou
{"title":"Metagenomic next-generation sequencing for lung cancer low respiratory tract infections diagnosis and characterizing microbiome features.","authors":"Yao Liu, Bohan Yang, Qi Qi, Shijie Liu, Yiheng Du, Linlin Ye, Qiong Zhou","doi":"10.3389/fcimb.2024.1518199","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The capability of mNGS in diagnosing suspected LRTIs and characterizing the respiratory microbiome in lung cancer patients requires further evaluation.</p><p><strong>Methods: </strong>This study evaluated mNGS diagnostic performance and utilized background microbial sequences to characterize LRT microbiome in these patients. GSVA was used to analyze the potential functions of identified genera.</p><p><strong>Results: </strong>Bacteria were the most common pathogens (n=74) in LRTIs of lung cancer patients, and polymicrobial infections predominated compared to monomicrobial infections (p<0.001). In diagnosing LRTIs in lung cancer patients, the pathogen detection rate of mNGS (83.3%, 70/84) was significantly higher than that of sputum culture (34.5%, 29/84) (p<0.001). This result was consistent with that of non-lung cancer patients (p<0.001). Furthermore, in the specific detection of bacteria (95.7% vs. 22.6%) and fungi (96.0% vs. 22.2%), the detection rate of mNGS was also significantly higher than that of CMTs mainly based on culture (p<0.001, p<0.001). However, in the detection of CMV/EBV viruses, there was no significant difference between the detection rate of mNGS and that of viral DNA quantification (p = 1.000 and 0.152). mNGS analysis revealed <i>Prevotella</i>, <i>Streptococcus</i>, <i>Veillonella</i>, <i>Rothia</i>, and <i>Capnocytophaga</i> as the most prevalent genera in the LRT of lung cancer patients. GSVA revealed significant correlations between these genera and tumor metabolic pathways as well as various signaling pathways including PI3K, Hippo, and p53.</p><p><strong>Conclusion: </strong>mNGS showed a higher pathogen detection rate than culture-based CMTs in lung cancer patients with LRTIs, and also characterizing LRT microbiome composition and revealing potential microbial functions linked to lung carcinogenesis.</p>","PeriodicalId":12458,"journal":{"name":"Frontiers in Cellular and Infection Microbiology","volume":"14 ","pages":"1518199"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11799255/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Cellular and Infection Microbiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fcimb.2024.1518199","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The capability of mNGS in diagnosing suspected LRTIs and characterizing the respiratory microbiome in lung cancer patients requires further evaluation.

Methods: This study evaluated mNGS diagnostic performance and utilized background microbial sequences to characterize LRT microbiome in these patients. GSVA was used to analyze the potential functions of identified genera.

Results: Bacteria were the most common pathogens (n=74) in LRTIs of lung cancer patients, and polymicrobial infections predominated compared to monomicrobial infections (p<0.001). In diagnosing LRTIs in lung cancer patients, the pathogen detection rate of mNGS (83.3%, 70/84) was significantly higher than that of sputum culture (34.5%, 29/84) (p<0.001). This result was consistent with that of non-lung cancer patients (p<0.001). Furthermore, in the specific detection of bacteria (95.7% vs. 22.6%) and fungi (96.0% vs. 22.2%), the detection rate of mNGS was also significantly higher than that of CMTs mainly based on culture (p<0.001, p<0.001). However, in the detection of CMV/EBV viruses, there was no significant difference between the detection rate of mNGS and that of viral DNA quantification (p = 1.000 and 0.152). mNGS analysis revealed Prevotella, Streptococcus, Veillonella, Rothia, and Capnocytophaga as the most prevalent genera in the LRT of lung cancer patients. GSVA revealed significant correlations between these genera and tumor metabolic pathways as well as various signaling pathways including PI3K, Hippo, and p53.

Conclusion: mNGS showed a higher pathogen detection rate than culture-based CMTs in lung cancer patients with LRTIs, and also characterizing LRT microbiome composition and revealing potential microbial functions linked to lung carcinogenesis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.90
自引率
7.00%
发文量
1817
审稿时长
14 weeks
期刊介绍: Frontiers in Cellular and Infection Microbiology is a leading specialty journal, publishing rigorously peer-reviewed research across all pathogenic microorganisms and their interaction with their hosts. Chief Editor Yousef Abu Kwaik, University of Louisville is supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide. Frontiers in Cellular and Infection Microbiology includes research on bacteria, fungi, parasites, viruses, endosymbionts, prions and all microbial pathogens as well as the microbiota and its effect on health and disease in various hosts. The research approaches include molecular microbiology, cellular microbiology, gene regulation, proteomics, signal transduction, pathogenic evolution, genomics, structural biology, and virulence factors as well as model hosts. Areas of research to counteract infectious agents by the host include the host innate and adaptive immune responses as well as metabolic restrictions to various pathogenic microorganisms, vaccine design and development against various pathogenic microorganisms, and the mechanisms of antibiotic resistance and its countermeasures.
期刊最新文献
Metagenomic next-generation sequencing for lung cancer low respiratory tract infections diagnosis and characterizing microbiome features. Advancements in the development of antivirals against SARS-Coronavirus. High-density lipoprotein cholesterol as a prognostic marker for 90-day transplant-free mortality in hepatitis B virus-related acute-on-chronic liver failure. Prevalence of the oral pathogen Filifactor alocis and its FtxA toxin related to clinical parameters and presence of Aggregatibacter actinomycetemcomitans. Visible and rapid detection of feline chaphamaparvovirus using multienzyme isothermal rapid amplification and lateral flow dipstick assay.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1