{"title":"Plasma-activated saline hyperthermic perfusion-induced pyroptosis boosts peritoneal carcinomatosis immunotherapy.","authors":"Miao Qi, Xinyi Zhao, Runze Fan, Jiao Lin, Zhuo Li, Na Liu, Xuejun Sun, Dehui Xu, Jianbao Zheng, Dingxin Liu, Renwu Zhou, Mingzhe Rong, Kostya Ostrikov","doi":"10.1016/j.freeradbiomed.2025.02.002","DOIUrl":null,"url":null,"abstract":"<p><p>Peritoneal carcinomatosis (PC) is a common metastatic cancer with limited treatment options. Herein, we present a novel strategy for the combined treatment of PC involving plasma-activated saline (PAS) and hyperthermic intraperitoneal perfusion. PAS revealed a strong cytotoxic effect because of reactive oxygen species (ROS) in two-dimensional cultures and three-dimensional tumor spheroids of PC-related cell lines. Notably, PAS induced gasdermin E (GSDME)-dependent pyroptosis and immunogenic cell death in vitro. PAS-enhanced hyperthermic intraperitoneal perfusion (PE-HIP) increased the number of CD3<sup>+</sup>, CD4<sup>+</sup> and CD8<sup>+</sup> T cells, while decreased the number of regulatory T cells, indicating that PAS stimulated T cell-based immune responses in vivo. Moreover, PE-HIP significantly inhibited tumor growth and improved survival in a PC-mice model, with no significant toxic side effects. Meanwhile, Vaccination against PAS-induced cell pyroptosis activated systemic antitumor immunity to prevent subcutaneous tumor growth. Overall, PE-HIP can serve as a new approach for PC treatment by ROS-assisted cancer immunotherapy.</p>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":" ","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.freeradbiomed.2025.02.002","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Peritoneal carcinomatosis (PC) is a common metastatic cancer with limited treatment options. Herein, we present a novel strategy for the combined treatment of PC involving plasma-activated saline (PAS) and hyperthermic intraperitoneal perfusion. PAS revealed a strong cytotoxic effect because of reactive oxygen species (ROS) in two-dimensional cultures and three-dimensional tumor spheroids of PC-related cell lines. Notably, PAS induced gasdermin E (GSDME)-dependent pyroptosis and immunogenic cell death in vitro. PAS-enhanced hyperthermic intraperitoneal perfusion (PE-HIP) increased the number of CD3+, CD4+ and CD8+ T cells, while decreased the number of regulatory T cells, indicating that PAS stimulated T cell-based immune responses in vivo. Moreover, PE-HIP significantly inhibited tumor growth and improved survival in a PC-mice model, with no significant toxic side effects. Meanwhile, Vaccination against PAS-induced cell pyroptosis activated systemic antitumor immunity to prevent subcutaneous tumor growth. Overall, PE-HIP can serve as a new approach for PC treatment by ROS-assisted cancer immunotherapy.
期刊介绍:
Free Radical Biology and Medicine is a leading journal in the field of redox biology, which is the study of the role of reactive oxygen species (ROS) and other oxidizing agents in biological systems. The journal serves as a premier forum for publishing innovative and groundbreaking research that explores the redox biology of health and disease, covering a wide range of topics and disciplines. Free Radical Biology and Medicine also commissions Special Issues that highlight recent advances in both basic and clinical research, with a particular emphasis on the mechanisms underlying altered metabolism and redox signaling. These Special Issues aim to provide a focused platform for the latest research in the field, fostering collaboration and knowledge exchange among researchers and clinicians.