Triptolide alleviates acute lung injury by reducing mitochondrial dysfunction mediated ferroptosis through the STAT3/p53 pathway

IF 7.1 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Free Radical Biology and Medicine Pub Date : 2025-02-04 DOI:10.1016/j.freeradbiomed.2025.02.001
Jia Zhou , Sanzhong Li , Yuting Yang , Chaoqi Zhou , Cheng Wang , Zhenguo Zeng
{"title":"Triptolide alleviates acute lung injury by reducing mitochondrial dysfunction mediated ferroptosis through the STAT3/p53 pathway","authors":"Jia Zhou ,&nbsp;Sanzhong Li ,&nbsp;Yuting Yang ,&nbsp;Chaoqi Zhou ,&nbsp;Cheng Wang ,&nbsp;Zhenguo Zeng","doi":"10.1016/j.freeradbiomed.2025.02.001","DOIUrl":null,"url":null,"abstract":"<div><div>Acute lung injury (ALI) represents a severe clinical condition marked by intense pulmonary inflammation and complex pathogenic mechanisms. Triptolide, a potent anti-inflammatory agent derived from the plant Tripterygium wilfordii Hook. f., remains to be fully elucidated for its therapeutic efficacy in ALI. This study aimed to investigate the potential of triptolide in mitigating ALI by modulating ferroptosis and preserving mitochondrial function. Utilizing an ALI model induced by lipopolysaccharide (LPS) both in mice and BEAS-2B cells, we evaluated the impact of triptolide on lung injury, inflammatory cytokines, oxidative stress, and mitochondrial function. RNA sequencing, network pharmacology, molecular docking, and a thermal stability assay for cellular proteins (CETSA) were utilized to identify triptolide targets and pathways. Triptolide significantly alleviated LPS-induced pulmonary pathological changes, downregulated inflammatory cytokines including IL-6, IL-1β, and TNF-α, and reduced reactive oxygen species (ROS) and malondialdehyde (MDA) levels while increasing glutathione (GSH) and superoxide dismutase (SOD) activity. RNA sequencing revealed that triptolide upregulated SLC7A11 and inhibited ferroptosis. Network pharmacology and molecular docking identified the STAT3/p53 pathway as a key mediator of triptolide's action. CETSA confirmed that triptolide binds to and enhances the thermal stability of STAT3 and p53 proteins. This study is the first to elucidate that triptolide mitigates ALI by targeting the STAT3/p53 pathway, preserving mitochondrial function, and inhibiting ferroptosis. Collectively, these results propose that triptolide may serve as an effective therapeutic option for the treatment of ALI.</div></div>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":"230 ","pages":"Pages 79-94"},"PeriodicalIF":7.1000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0891584925000760","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Acute lung injury (ALI) represents a severe clinical condition marked by intense pulmonary inflammation and complex pathogenic mechanisms. Triptolide, a potent anti-inflammatory agent derived from the plant Tripterygium wilfordii Hook. f., remains to be fully elucidated for its therapeutic efficacy in ALI. This study aimed to investigate the potential of triptolide in mitigating ALI by modulating ferroptosis and preserving mitochondrial function. Utilizing an ALI model induced by lipopolysaccharide (LPS) both in mice and BEAS-2B cells, we evaluated the impact of triptolide on lung injury, inflammatory cytokines, oxidative stress, and mitochondrial function. RNA sequencing, network pharmacology, molecular docking, and a thermal stability assay for cellular proteins (CETSA) were utilized to identify triptolide targets and pathways. Triptolide significantly alleviated LPS-induced pulmonary pathological changes, downregulated inflammatory cytokines including IL-6, IL-1β, and TNF-α, and reduced reactive oxygen species (ROS) and malondialdehyde (MDA) levels while increasing glutathione (GSH) and superoxide dismutase (SOD) activity. RNA sequencing revealed that triptolide upregulated SLC7A11 and inhibited ferroptosis. Network pharmacology and molecular docking identified the STAT3/p53 pathway as a key mediator of triptolide's action. CETSA confirmed that triptolide binds to and enhances the thermal stability of STAT3 and p53 proteins. This study is the first to elucidate that triptolide mitigates ALI by targeting the STAT3/p53 pathway, preserving mitochondrial function, and inhibiting ferroptosis. Collectively, these results propose that triptolide may serve as an effective therapeutic option for the treatment of ALI.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Free Radical Biology and Medicine
Free Radical Biology and Medicine 医学-内分泌学与代谢
CiteScore
14.00
自引率
4.10%
发文量
850
审稿时长
22 days
期刊介绍: Free Radical Biology and Medicine is a leading journal in the field of redox biology, which is the study of the role of reactive oxygen species (ROS) and other oxidizing agents in biological systems. The journal serves as a premier forum for publishing innovative and groundbreaking research that explores the redox biology of health and disease, covering a wide range of topics and disciplines. Free Radical Biology and Medicine also commissions Special Issues that highlight recent advances in both basic and clinical research, with a particular emphasis on the mechanisms underlying altered metabolism and redox signaling. These Special Issues aim to provide a focused platform for the latest research in the field, fostering collaboration and knowledge exchange among researchers and clinicians.
期刊最新文献
Penile endothelial dysfunction, impaired redox metabolism and blunted mitochondrial bioenergetics in diet-induced obesity: compensatory role of H2O2. Eight Weeks of High-Intensity Interval Training Alters the Tongue Microbiome and Impacts Nitrate and Nitrite Levels in Previously Sedentary Men. Skin sensitizers enhance superoxide formation by polycyclic aromatic hydrocarbons via the aldo-keto reductase pathway S-nitrosylation of peroxiredoxin 2 exacerbates hyperuricemia-induced renal injury through regulation of mitochondrial homeostasis Corrigendum to "The H3K9 histone methyltransferase G9a modulates renal ischemia reperfusion injury by targeting Sirt1" [Free Radic. Biol. Med. 172 (2021) 123-135].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1