{"title":"FAK mediates mechanical signaling to maintain epithelial homeostasis through YAP/TAZ-TEADs.","authors":"Yang Peng, Qiuyun Yuan, Shuting Zhou, Jianguo Gan, Zhengzhong Shen, Xiaoqiang Xia, Yuchen Jiang, Qianming Chen, Yao Yuan, Gu He, Qiang Wei, Xiaodong Feng","doi":"10.1007/s00418-025-02360-x","DOIUrl":null,"url":null,"abstract":"<p><p>Epithelial homeostasis ensures that the epithelium can perform its normal physiological functions. Mechanical signaling response through integrin-mediated adhesions of the basement membrane (BM) is crucial for maintaining epithelial homeostasis. The essential mechanosensors YAP and the paralog TAZ (YAP/TAZ) have been shown to play a critical role in epithelial homeostasis, but the key regulator that mediates mechanical signaling to YAP/TAZ in maintaining epithelial homeostasis has not been fully understood. In this study, we noticed that mechanical signals correlated with YAP/TAZ activation and basal state maintenance in epithelial stem/progenitor cells through immunohistochemistry. Subsequently, we found that inhibition of focal adhesion kinase (FAK) suppressed YAP/TAZ activation in the human keratinocyte line HaCaT cells. Furthermore, inhibition of the interaction between YAP/TAZ and the transcriptional enhanced associate domains (TEADs) resulted in the differentiation of HaCaT cells. Finally, we used primary mouse epithelial cells to reconstruct the epithelium in vitro and found that FAK inhibition led to both a reduction in YAP/TAZ activity and an increase of differentiation in the basal layer cells. In conclusion, our findings reveal that FAK mediates mechanical signaling to maintain epithelial homeostasis via YAP/TAZ-TEADs.</p>","PeriodicalId":13107,"journal":{"name":"Histochemistry and Cell Biology","volume":"163 1","pages":"31"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Histochemistry and Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00418-025-02360-x","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Epithelial homeostasis ensures that the epithelium can perform its normal physiological functions. Mechanical signaling response through integrin-mediated adhesions of the basement membrane (BM) is crucial for maintaining epithelial homeostasis. The essential mechanosensors YAP and the paralog TAZ (YAP/TAZ) have been shown to play a critical role in epithelial homeostasis, but the key regulator that mediates mechanical signaling to YAP/TAZ in maintaining epithelial homeostasis has not been fully understood. In this study, we noticed that mechanical signals correlated with YAP/TAZ activation and basal state maintenance in epithelial stem/progenitor cells through immunohistochemistry. Subsequently, we found that inhibition of focal adhesion kinase (FAK) suppressed YAP/TAZ activation in the human keratinocyte line HaCaT cells. Furthermore, inhibition of the interaction between YAP/TAZ and the transcriptional enhanced associate domains (TEADs) resulted in the differentiation of HaCaT cells. Finally, we used primary mouse epithelial cells to reconstruct the epithelium in vitro and found that FAK inhibition led to both a reduction in YAP/TAZ activity and an increase of differentiation in the basal layer cells. In conclusion, our findings reveal that FAK mediates mechanical signaling to maintain epithelial homeostasis via YAP/TAZ-TEADs.
期刊介绍:
Histochemistry and Cell Biology is devoted to the field of molecular histology and cell biology, publishing original articles dealing with the localization and identification of molecular components, metabolic activities and cell biological aspects of cells and tissues. Coverage extends to the development, application, and/or evaluation of methods and probes that can be used in the entire area of histochemistry and cell biology.