{"title":"Reduced efficacy of selection on a young Z chromosome region of Schistosoma japonicum.","authors":"Andrea Mrnjavac, Beatriz Vicoso","doi":"10.1093/gbe/evaf021","DOIUrl":null,"url":null,"abstract":"<p><p>Sex-linked and autosomal loci experience different selective pressures and evolutionary dynamics. X (or Z) chromosomes are often hemizygous in males (or females), as Y (or W) chromosomes often degenerate. Such hemizygous regions can be under greater efficacy of selection, as recessive mutations are immediately exposed to selection in the heterogametic sex leading to faster adaptation and faster divergence on the X chromosome (the so-called Faster-X or Faster-Z effect). However, in young non-recombining regions, Y/W chromosomes often have many functional genes, and many X/Z-linked loci are therefore diploid. The sheltering of recessive mutations on the X/Z by the Y/W homolog is expected to drive slower adaptation for diploid X/Z loci, i.e. a reduction in the efficacy of selection. While the Faster-X effect has been studied extensively, much less is known empirically about the evolutionary dynamics of diploid X or Z chromosomes. Here, we took advantage of published population genomic data in the female-heterogametic human parasite Schistosoma japonicum to characterize the gene content and diversity levels of the diploid and hemizygous regions of the Z chromosome. We used different metrics of selective pressures acting on genes to test for differences in the efficacy of selection in hemizygous and diploid Z regions, relative to autosomes. We found consistent patterns suggesting reduced Ne, and reduced efficacy of purifying selection, on both hemizygous and diploid Z regions. Moreover, relaxed selection was particularly pronounced for female-biased genes on the diploid Z, as predicted by recent theoretical work.</p>","PeriodicalId":12779,"journal":{"name":"Genome Biology and Evolution","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology and Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gbe/evaf021","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Sex-linked and autosomal loci experience different selective pressures and evolutionary dynamics. X (or Z) chromosomes are often hemizygous in males (or females), as Y (or W) chromosomes often degenerate. Such hemizygous regions can be under greater efficacy of selection, as recessive mutations are immediately exposed to selection in the heterogametic sex leading to faster adaptation and faster divergence on the X chromosome (the so-called Faster-X or Faster-Z effect). However, in young non-recombining regions, Y/W chromosomes often have many functional genes, and many X/Z-linked loci are therefore diploid. The sheltering of recessive mutations on the X/Z by the Y/W homolog is expected to drive slower adaptation for diploid X/Z loci, i.e. a reduction in the efficacy of selection. While the Faster-X effect has been studied extensively, much less is known empirically about the evolutionary dynamics of diploid X or Z chromosomes. Here, we took advantage of published population genomic data in the female-heterogametic human parasite Schistosoma japonicum to characterize the gene content and diversity levels of the diploid and hemizygous regions of the Z chromosome. We used different metrics of selective pressures acting on genes to test for differences in the efficacy of selection in hemizygous and diploid Z regions, relative to autosomes. We found consistent patterns suggesting reduced Ne, and reduced efficacy of purifying selection, on both hemizygous and diploid Z regions. Moreover, relaxed selection was particularly pronounced for female-biased genes on the diploid Z, as predicted by recent theoretical work.
期刊介绍:
About the journal
Genome Biology and Evolution (GBE) publishes leading original research at the interface between evolutionary biology and genomics. Papers considered for publication report novel evolutionary findings that concern natural genome diversity, population genomics, the structure, function, organisation and expression of genomes, comparative genomics, proteomics, and environmental genomic interactions. Major evolutionary insights from the fields of computational biology, structural biology, developmental biology, and cell biology are also considered, as are theoretical advances in the field of genome evolution. GBE’s scope embraces genome-wide evolutionary investigations at all taxonomic levels and for all forms of life — within populations or across domains. Its aims are to further the understanding of genomes in their evolutionary context and further the understanding of evolution from a genome-wide perspective.