Meta-analysis of the association between low concentration PM2.5 and cardiovascular mortality in the United States and Canada.

IF 2 4区 医学 Q4 TOXICOLOGY Inhalation Toxicology Pub Date : 2025-02-06 DOI:10.1080/08958378.2025.2457639
Chloe S Chung, Giffe T Johnson, Annette C Rohr
{"title":"Meta-analysis of the association between low concentration PM<sub>2.5</sub> and cardiovascular mortality in the United States and Canada.","authors":"Chloe S Chung, Giffe T Johnson, Annette C Rohr","doi":"10.1080/08958378.2025.2457639","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>The adverse effects of fine particulate matter (PM<sub>2.5</sub>), including cardiovascular outcomes, are well established. This review and meta-analysis investigates the association between long-term exposure to low concentration PM<sub>2.5</sub> (<12 µg/m<sup>3</sup>) and CVD mortality in U.S. and Canadian populations.</p><p><strong>Methods: </strong>We conducted a literature search and completed random effect meta-analyses.</p><p><strong>Results: </strong>Twenty-four studies were reviewed, with 12 from each of the U.S. and Canada. Fifteen of eighteen studies that reported hazard ratios (HRs) for total CVD mortality reported statistically significant positive associations with low concentration PM<sub>2.5</sub>. For cause-specific CVD mortality, more consistent results were shown for ischemic heart disease (IHD) mortality, with all eleven studies reporting statistically significant associations (HR = 1.09 to 2.48). Only three of 12 studies evaluating cerebrovascular mortality reported statistically significant associations (HR = 1.10 to 1.27). Studies that restricted analyses to participants with mean exposures <12 µg/m<sup>3</sup> found statistically significant associations between PM<sub>2.5</sub> and at least some of the CVD mortality outcomes of interest. However, the shape of the concentration-response functions varied widely. Only six studies controlled for at least one additional air pollutant, and multi-pollutant models generally showed an attenuated impact of PM<sub>2.5</sub>. Despite existing gaps in understanding the association between low concentrations of PM<sub>2.5</sub> and cardiovascular mortality, this review highlights the critical importance of ongoing efforts to improve air quality for public health benefits.</p><p><strong>Conclusions: </strong>Continued focus on understanding the shape of the concentration-response function for PM<sub>2.5</sub>, the impact of co-pollutants on observed effects, and how particle composition may impact effect estimates, is recommended.</p>","PeriodicalId":13561,"journal":{"name":"Inhalation Toxicology","volume":" ","pages":"1-17"},"PeriodicalIF":2.0000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inhalation Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08958378.2025.2457639","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: The adverse effects of fine particulate matter (PM2.5), including cardiovascular outcomes, are well established. This review and meta-analysis investigates the association between long-term exposure to low concentration PM2.5 (<12 µg/m3) and CVD mortality in U.S. and Canadian populations.

Methods: We conducted a literature search and completed random effect meta-analyses.

Results: Twenty-four studies were reviewed, with 12 from each of the U.S. and Canada. Fifteen of eighteen studies that reported hazard ratios (HRs) for total CVD mortality reported statistically significant positive associations with low concentration PM2.5. For cause-specific CVD mortality, more consistent results were shown for ischemic heart disease (IHD) mortality, with all eleven studies reporting statistically significant associations (HR = 1.09 to 2.48). Only three of 12 studies evaluating cerebrovascular mortality reported statistically significant associations (HR = 1.10 to 1.27). Studies that restricted analyses to participants with mean exposures <12 µg/m3 found statistically significant associations between PM2.5 and at least some of the CVD mortality outcomes of interest. However, the shape of the concentration-response functions varied widely. Only six studies controlled for at least one additional air pollutant, and multi-pollutant models generally showed an attenuated impact of PM2.5. Despite existing gaps in understanding the association between low concentrations of PM2.5 and cardiovascular mortality, this review highlights the critical importance of ongoing efforts to improve air quality for public health benefits.

Conclusions: Continued focus on understanding the shape of the concentration-response function for PM2.5, the impact of co-pollutants on observed effects, and how particle composition may impact effect estimates, is recommended.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Inhalation Toxicology
Inhalation Toxicology 医学-毒理学
CiteScore
4.10
自引率
4.80%
发文量
38
审稿时长
6-12 weeks
期刊介绍: Inhalation Toxicology is a peer-reviewed publication providing a key forum for the latest accomplishments and advancements in concepts, approaches, and procedures presently being used to evaluate the health risk associated with airborne chemicals. The journal publishes original research, reviews, symposia, and workshop topics involving the respiratory system’s functions in health and disease, the pathogenesis and mechanism of injury, the extrapolation of animal data to humans, the effects of inhaled substances on extra-pulmonary systems, as well as reliable and innovative models for predicting human disease.
期刊最新文献
A particle of concern: explored and proposed underlying mechanisms of microplastic-induced lung damage and pulmonary fibrosis. Meta-analysis of the association between low concentration PM2.5 and cardiovascular mortality in the United States and Canada. Mouse pulmonary response following solid surface composite dust inhalation. Urinary oxidative stress biomarkers in nephrotoxicity induced by PM2.5 in a rat model. MiR-421 mediates PM2.5-induced endothelial dysfunction via crosstalk between bronchial epithelial and endothelial cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1