首页 > 最新文献

Inhalation Toxicology最新文献

英文 中文
GRP78 mediates mitochondrial fusion and fission in cigarette smoke-induced inflammatory responses in airway epithelial cells. GRP78 在香烟烟雾诱导的气道上皮细胞炎症反应中介导线粒体融合和分裂。
IF 2 4区 医学 Q4 TOXICOLOGY Pub Date : 2024-10-01 Epub Date: 2024-11-20 DOI: 10.1080/08958378.2024.2428163
Yong Wang, Ya-Jing Li, Chen-Chen Li, Li Pu, Wan-Li Geng, Fei Gao, Qing Zhang

Objective: Chronic obstructive pulmonary disease (COPD) is characterized by persistent airway inflammation, with cigarette smoke being a major contributor to epithelial injury. Recent studies have shown that abnormal mitochondrial function is closely linked to the onset and progression of airway inflammation. This study aims to explore the role and underlying molecular mechanisms of mitochondrial dynamics in cigarette smoke-induced airway inflammation.

Materials and methods: Human bronchial epithelial (HBE) cells were exposed to cigarette smoke extract (CSE) to assess the expression of mitochondrial fusion markers MFN2 and OPA1, the fission marker DRP1, and the glucose-regulated protein GRP78. The siRNA and pharmaceutics targeting DRP1, MFN2, and GRP78 were employed. Both cells and supernatants were analyzed for inflammatory factor levels and the related signaling pathways.

Results: In this study, HBE cells exposed to CSE showed a significant decrease in the proteins MFN2 and OPA1 and an increase in DRP1. The inhibition of DRP1 expression mitigated inflammation while silencing MFN2 exacerbated it. This was similarly corroborated by the use of the DRP1 inhibitor mdivi-1 and the MFN2 activator leflunomide. Additionally, we proved that GRP78 played an important regulatory role as an essential endoplasmic reticulum protein, regulating the mitochondrial fusion/fission process and subsequently activating the NF-κB pathway to regulate airway inflammation.

Discussion and conclusion: Taken together, these results suggested that the GRP78-mediated mitochondrial fusion and fission process played a vital role in cigarette smoke-induced airway inflammation and might be a potential therapeutic target in this regard.

目的:慢性阻塞性肺病(COPD)的特点是持续的气道炎症,香烟烟雾是造成上皮损伤的主要因素。最近的研究表明,线粒体功能异常与气道炎症的发生和发展密切相关。材料与方法:将人支气管上皮细胞(HBE)暴露于香烟烟雾提取物(CSE)中,评估线粒体融合标志物 MFN2 和 OPA1、裂变标志物 DRP1 以及葡萄糖调控蛋白 GRP78 的表达。研究人员采用了针对 DRP1、MFN2 和 GRP78 的 siRNA 和药物。对细胞和上清液进行了炎症因子水平及相关信号通路的分析:结果:在这项研究中,暴露于 CSE 的 HBE 细胞显示出 MFN2 和 OPA1 蛋白的显著减少以及 DRP1 蛋白的增加。抑制 DRP1 的表达可减轻炎症,而沉默 MFN2 则会加剧炎症。使用 DRP1 抑制剂 mdivi-1 和 MFN2 激活剂来氟米特也同样证实了这一点。此外,我们还证明了 GRP78 作为一种重要的内质网蛋白发挥着重要的调节作用,它能调节线粒体的融合/分裂过程,进而激活 NF-κB 通路以调节气道炎症:综上所述,这些结果表明 GRP78 介导的线粒体融合和裂变过程在香烟烟雾诱导的气道炎症中发挥了重要作用,并可能成为这方面的潜在治疗靶点。
{"title":"GRP78 mediates mitochondrial fusion and fission in cigarette smoke-induced inflammatory responses in airway epithelial cells.","authors":"Yong Wang, Ya-Jing Li, Chen-Chen Li, Li Pu, Wan-Li Geng, Fei Gao, Qing Zhang","doi":"10.1080/08958378.2024.2428163","DOIUrl":"10.1080/08958378.2024.2428163","url":null,"abstract":"<p><strong>Objective: </strong>Chronic obstructive pulmonary disease (COPD) is characterized by persistent airway inflammation, with cigarette smoke being a major contributor to epithelial injury. Recent studies have shown that abnormal mitochondrial function is closely linked to the onset and progression of airway inflammation. This study aims to explore the role and underlying molecular mechanisms of mitochondrial dynamics in cigarette smoke-induced airway inflammation.</p><p><strong>Materials and methods: </strong>Human bronchial epithelial (HBE) cells were exposed to cigarette smoke extract (CSE) to assess the expression of mitochondrial fusion markers MFN2 and OPA1, the fission marker DRP1, and the glucose-regulated protein GRP78. The siRNA and pharmaceutics targeting DRP1, MFN2, and GRP78 were employed. Both cells and supernatants were analyzed for inflammatory factor levels and the related signaling pathways.</p><p><strong>Results: </strong>In this study, HBE cells exposed to CSE showed a significant decrease in the proteins MFN2 and OPA1 and an increase in DRP1. The inhibition of DRP1 expression mitigated inflammation while silencing MFN2 exacerbated it. This was similarly corroborated by the use of the DRP1 inhibitor mdivi-1 and the MFN2 activator leflunomide. Additionally, we proved that GRP78 played an important regulatory role as an essential endoplasmic reticulum protein, regulating the mitochondrial fusion/fission process and subsequently activating the NF-κB pathway to regulate airway inflammation.</p><p><strong>Discussion and conclusion: </strong>Taken together, these results suggested that the GRP78-mediated mitochondrial fusion and fission process played a vital role in cigarette smoke-induced airway inflammation and might be a potential therapeutic target in this regard.</p>","PeriodicalId":13561,"journal":{"name":"Inhalation Toxicology","volume":" ","pages":"511-520"},"PeriodicalIF":2.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142675753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MiR-421 mediates PM2.5-induced endothelial dysfunction via crosstalk between bronchial epithelial and endothelial cells. MiR-421通过支气管上皮细胞和内皮细胞之间的串扰介导PM2.5诱导的内皮功能障碍。
IF 2 4区 医学 Q4 TOXICOLOGY Pub Date : 2024-10-01 Epub Date: 2024-05-22 DOI: 10.1080/08958378.2024.2356839
Yiqing Chen, Mengting Zeng, Jinxin Xie, Zhihao Xiong, Yuxin Jin, Zihan Pan, Michail Spanos, Tianhui Wang, Hongyun Wang

Objective: PM2.5 is closely linked to vascular endothelial injury and has emerged as a major threat to human health. Our previous research indicated that exposure to PM2.5 induced an increased release of miR-421 from the bronchial epithelium. However, the role of miR-421 in PM2.5-induced endothelial injury remains elusive.

Materials and methods: We utilized a subacute PM2.5-exposure model in mice in vivo and an acute injury cell model in vitro to simulate PM2.5-associated endothelial injury. We also used quantitative real-time polymerase chain reaction, western blot, enzyme-linked immunosorbent assay, and immunohistochemistry to investigate the role of miR-421 in PM2.5-induced endothelial injury.

Results: Our findings reveal that inhibition of miR-421 attenuated PM2.5-induced endothelial injury and hypertension. Mechanistically, miR-421 inhibited the expression of angiotensin-converting enzyme 2 (ACE2) in human umbilical vein endothelial cells and upregulated the expression of the downstream molecule inducible nitric oxide synthase (iNOS), thereby exacerbating PM2.5-induced endothelial injury.

Conclusions: Our results indicate that PM2.5 exposure facilitates crosstalk between bronchial epithelial and endothelial cells via miR-421/ACE2/iNOS signaling pathway, mediating endothelial damage and hypertension. MiR-421 inhibition may offer a new strategy for the prevention and treatment of PM2.5-induced vascular endothelial injury.

目的:PM2.5 与血管内皮损伤密切相关,已成为人类健康的主要威胁。我们之前的研究表明,暴露于 PM2.5 会诱导支气管上皮细胞释放更多的 miR-421。然而,miR-421在PM2.5诱导的内皮损伤中的作用仍不明确:我们利用体内亚急性 PM2.5 暴露小鼠模型和体外急性损伤细胞模型模拟 PM2.5 相关的内皮损伤。我们还使用了定量实时聚合酶链反应、Western 印迹、酶联免疫吸附试验和免疫组织化学方法来研究 miR-421 在 PM2.5 诱导的内皮损伤中的作用:结果:我们的研究结果表明,抑制 miR-421 可减轻 PM2.5 诱导的内皮损伤和高血压。从机制上讲,miR-421 可抑制血管紧张素转换酶 2(ACE2)在人脐静脉内皮细胞中的表达,并上调下游分子诱导型一氧化氮合酶(iNOS)的表达,从而加剧 PM2.5 诱导的内皮损伤:我们的研究结果表明,PM2.5 暴露通过 miR-421/ACE2/iNOS 信号通路促进支气管上皮细胞和内皮细胞之间的串扰,介导内皮损伤和高血压。抑制 MiR-421 可为预防和治疗 PM2.5 诱导的血管内皮损伤提供一种新策略。
{"title":"<i>MiR-421</i> mediates PM<sub>2.5</sub>-induced endothelial dysfunction via crosstalk between bronchial epithelial and endothelial cells.","authors":"Yiqing Chen, Mengting Zeng, Jinxin Xie, Zhihao Xiong, Yuxin Jin, Zihan Pan, Michail Spanos, Tianhui Wang, Hongyun Wang","doi":"10.1080/08958378.2024.2356839","DOIUrl":"10.1080/08958378.2024.2356839","url":null,"abstract":"<p><strong>Objective: </strong>PM<sub>2.5</sub> is closely linked to vascular endothelial injury and has emerged as a major threat to human health. Our previous research indicated that exposure to PM<sub>2.5</sub> induced an increased release of <i>miR-421</i> from the bronchial epithelium. However, the role of <i>miR-421</i> in PM<sub>2.5</sub>-induced endothelial injury remains elusive.</p><p><strong>Materials and methods: </strong>We utilized a subacute PM<sub>2.5</sub>-exposure model in mice <i>in vivo</i> and an acute injury cell model <i>in vitro</i> to simulate PM<sub>2.5</sub>-associated endothelial injury. We also used quantitative real-time polymerase chain reaction, western blot, enzyme-linked immunosorbent assay, and immunohistochemistry to investigate the role of <i>miR-421</i> in PM<sub>2.5</sub>-induced endothelial injury.</p><p><strong>Results: </strong>Our findings reveal that inhibition of <i>miR-421</i> attenuated PM<sub>2.5</sub>-induced endothelial injury and hypertension. Mechanistically, <i>miR-421</i> inhibited the expression of <i>angiotensin-converting enzyme 2 (ACE2</i>) in human umbilical vein endothelial cells and upregulated the expression of the downstream molecule inducible <i>nitric oxide synthase (iNOS)</i>, thereby exacerbating PM<sub>2.5</sub>-induced endothelial injury.</p><p><strong>Conclusions: </strong>Our results indicate that PM<sub>2.5</sub> exposure facilitates crosstalk between bronchial epithelial and endothelial cells <i>via miR-421</i>/<i>ACE2</i>/<i>iNOS</i> signaling pathway, mediating endothelial damage and hypertension. <i>MiR-421</i> inhibition may offer a new strategy for the prevention and treatment of PM<sub>2.5</sub>-induced vascular endothelial injury.</p>","PeriodicalId":13561,"journal":{"name":"Inhalation Toxicology","volume":" ","pages":"501-510"},"PeriodicalIF":2.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141079939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Temporal evaluation of lung injury following chlorine Inhalation in a ventilated pig model.
IF 2 4区 医学 Q4 TOXICOLOGY Pub Date : 2024-10-01 Epub Date: 2024-12-02 DOI: 10.1080/08958378.2024.2433762
Matthew Neal, Jill Harvilchuck, David Pressburger, William Coley, Tom C-C Hu

Objective: Chlorine (Cl2) is a widely used industrial chemical and toxic human exposures have occurred from Cl2 releases. No approved medical countermeasures (MCMs) exist for Cl2-induced lung injuries. The objective of this study was to develop and characterize swine Cl2 inhalation injuries to understand lung injury and histopathological sequalae.

Materials and methods: Male swine (approximately 14 weeks old) were anesthetized, paralyzed, intubated, and exposed to clean air or Cl2 while connected to a ventilator. The exposed LD50/24 hr of 1.8 mg/kg was delivered within a 15-20-minute timeframe. Scheduled terminal timepoints were 6 h, 7- and 30-days post-exposure.

Results: Following Cl2 exposure, 46% of the animals succumbed with an average time to death of 1.42 h. Dynamic lung compliance at 6 h post-exposure was reduced 45%. Clinical observations demonstrated respiratory abnormalities similar to Cl2 exposed humans. Compared to air shams, Cl2-exposed animals had decreased SpO2, arterial blood pH, pO2, sO2, increased blood lactate levels and deoxyhemoglobin levels at early timepoints. Increased neutrophils 6 h post- exposure occurred concurrent with increased inflammatory cytokines, bronchiolar epithelial necrosis with alveolar edema, cellular infiltrates, and lobular atelectasis.

Discussion/conclusions: Potentially relevant biomarkers involved in the progression and recovery from acute Cl2 lung injury in this model include lung compliance, select cytokines/chemokines, arterial blood gas parameters, and histopathological evaluation. Normal lung histopathological observations beyond 7- days indicates that histopathological evaluations should occur earlier. This animal model delivers accurate and consistent Cl2 exposures resulting in a human-relevant lung injury for evaluating MCM efficacy against Cl2-mediated acute lung injury.

{"title":"Temporal evaluation of lung injury following chlorine Inhalation in a ventilated pig model.","authors":"Matthew Neal, Jill Harvilchuck, David Pressburger, William Coley, Tom C-C Hu","doi":"10.1080/08958378.2024.2433762","DOIUrl":"10.1080/08958378.2024.2433762","url":null,"abstract":"<p><strong>Objective: </strong>Chlorine (Cl<sub>2</sub>) is a widely used industrial chemical and toxic human exposures have occurred from Cl<sub>2</sub> releases. No approved medical countermeasures (MCMs) exist for Cl<sub>2</sub>-induced lung injuries. The objective of this study was to develop and characterize swine Cl<sub>2</sub> inhalation injuries to understand lung injury and histopathological sequalae.</p><p><strong>Materials and methods: </strong>Male swine (approximately 14 weeks old) were anesthetized, paralyzed, intubated, and exposed to clean air or Cl<sub>2</sub> while connected to a ventilator. The exposed LD<sub>50/24 hr</sub> of 1.8 mg/kg was delivered within a 15-20-minute timeframe. Scheduled terminal timepoints were 6 h, 7- and 30-days post-exposure.</p><p><strong>Results: </strong>Following Cl<sub>2</sub> exposure, 46% of the animals succumbed with an average time to death of 1.42 h. Dynamic lung compliance at 6 h post-exposure was reduced 45%. Clinical observations demonstrated respiratory abnormalities similar to Cl<sub>2</sub> exposed humans. Compared to air shams, Cl<sub>2</sub>-exposed animals had decreased SpO<sub>2</sub>, arterial blood pH, pO<sub>2</sub>, sO<sub>2</sub>, increased blood lactate levels and deoxyhemoglobin levels at early timepoints. Increased neutrophils 6 h post- exposure occurred concurrent with increased inflammatory cytokines, bronchiolar epithelial necrosis with alveolar edema, cellular infiltrates, and lobular atelectasis.</p><p><strong>Discussion/conclusions: </strong>Potentially relevant biomarkers involved in the progression and recovery from acute Cl<sub>2</sub> lung injury in this model include lung compliance, select cytokines/chemokines, arterial blood gas parameters, and histopathological evaluation. Normal lung histopathological observations beyond 7- days indicates that histopathological evaluations should occur earlier. This animal model delivers accurate and consistent Cl<sub>2</sub> exposures resulting in a human-relevant lung injury for evaluating MCM efficacy against Cl<sub>2</sub>-mediated acute lung injury.</p>","PeriodicalId":13561,"journal":{"name":"Inhalation Toxicology","volume":" ","pages":"521-537"},"PeriodicalIF":2.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142768649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Administration of airborne pathogens in non-human primates. 在非人类灵长类动物中施用空气传播的病原体。
IF 2 4区 医学 Q4 TOXICOLOGY Pub Date : 2024-10-01 Epub Date: 2024-10-10 DOI: 10.1080/08958378.2024.2412685
Justina R Creppy, Benoit Delache, Julien Lemaitre, Branka Horvat, Laurent Vecellio, Frédéric Ducancel

Purpose: Airborne pathogen scan penetrate in human respiratory tract and can cause illness. The use of animal models to predict aerosol deposition and study respiratory disease pathophysiology is therefore important for research and a prerequisite to test and study the mechanism of action of treatment. NHPs are relevant animal species for inhalation studies because of their similarities with humans in terms of anatomical structure, respiratory parameters and immune system.

Materials and methods: The aim of this review is to provide an overview of the state of the art of pathogen aerosol studies performed in non-human primates (NHPs). Herein, we present and discuss the deposition of aerosolized bacteria and viruses. In this review, we present important advantages of using NHPs as model for inhalation studies.

Results: We demonstrate that deposition in the respiratory tract is not only a function of aerosol size but also the technique of administration influences the biological activity and site of aerosol deposition. Finally, we observe an influence of a region of pathogen deposition in the respiratory tract on the development of the pathophysiological effect in NHPs.

Conclusion: The wide range of methods used for the delivery of pathogento NHP respiratory airways is associated with varying doses and deposition profiles in the airways.

目的:空气中的病原体扫描可穿透人体呼吸道并导致疾病。因此,使用动物模型预测气溶胶沉积和研究呼吸道疾病的病理生理学对研究非常重要,也是测试和研究治疗作用机制的先决条件。非人类动物在解剖结构、呼吸参数和免疫系统方面与人类相似,因此是吸入研究的相关动物物种:本综述旨在概述在非人灵长类动物(NHPs)中进行的病原体气溶胶研究的最新进展。在此,我们介绍并讨论了气溶胶细菌和病毒的沉积。在这篇综述中,我们介绍了使用非人灵长类动物作为吸入研究模型的重要优势:结果:我们证明,气溶胶在呼吸道中的沉积不仅是气溶胶大小的函数,而且给药技术也会影响气溶胶的生物活性和沉积部位。最后,我们观察到病原体在呼吸道的沉积区域对非自然人病理生理效应的发展有影响:结论:向 NHP 呼吸道投放病原体的方法多种多样,其剂量和在呼吸道中的沉积情况也各不相同。
{"title":"Administration of airborne pathogens in non-human primates.","authors":"Justina R Creppy, Benoit Delache, Julien Lemaitre, Branka Horvat, Laurent Vecellio, Frédéric Ducancel","doi":"10.1080/08958378.2024.2412685","DOIUrl":"10.1080/08958378.2024.2412685","url":null,"abstract":"<p><strong>Purpose: </strong>Airborne pathogen scan penetrate in human respiratory tract and can cause illness. The use of animal models to predict aerosol deposition and study respiratory disease pathophysiology is therefore important for research and a prerequisite to test and study the mechanism of action of treatment. NHPs are relevant animal species for inhalation studies because of their similarities with humans in terms of anatomical structure, respiratory parameters and immune system.</p><p><strong>Materials and methods: </strong>The aim of this review is to provide an overview of the state of the art of pathogen aerosol studies performed in non-human primates (NHPs). Herein, we present and discuss the deposition of aerosolized bacteria and viruses. In this review, we present important advantages of using NHPs as model for inhalation studies.</p><p><strong>Results: </strong>We demonstrate that deposition in the respiratory tract is not only a function of aerosol size but also the technique of administration influences the biological activity and site of aerosol deposition. Finally, we observe an influence of a region of pathogen deposition in the respiratory tract on the development of the pathophysiological effect in NHPs.</p><p><strong>Conclusion: </strong>The wide range of methods used for the delivery of pathogento NHP respiratory airways is associated with varying doses and deposition profiles in the airways.</p>","PeriodicalId":13561,"journal":{"name":"Inhalation Toxicology","volume":" ","pages":"475-500"},"PeriodicalIF":2.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142464301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of soluble epoxide hydrolase inhibition on silica-induced pulmonary fibrosis, ectopic lymphoid neogenesis, and autoantibody production in lupus-prone mice. 可溶性环氧化物水解酶抑制剂对二氧化硅诱导的红斑狼疮小鼠肺纤维化、异位淋巴新生和自身抗体产生的影响
IF 2 4区 医学 Q4 TOXICOLOGY Pub Date : 2024-08-01 Epub Date: 2024-10-17 DOI: 10.1080/08958378.2024.2413373
Olivia F McDonald, James G Wagner, Ryan P Lewandowski, Lauren K Heine, Vanessa Estrada, Elham Pourmand, Megha Singhal, Jack R Harkema, Kin Sing Stephen Lee, James J Pestka

Objective: Acute intranasal (IN) instillation of lupus-prone NZBWF1 mice with crystalline silica (cSiO2) triggers robust lung inflammation that drives autoimmunity. Prior studies in other preclinical models show that soluble epoxide hydrolase (sEH) inhibition upregulates pro-resolving lipid metabolites that are protective against pulmonary inflammation. Herein, we assessed in NZBWF1 mice how acute IN cSiO2 exposure with or without the selective sEH inhibitor TPPU influences lipidomic, transcriptomic, proteomic, and histopathological biomarkers of inflammation, fibrosis, and autoimmunity.

Methods: Female 6-week-old NZBWF1 mice were fed control or TPPU-supplemented diets for 2 weeks then IN instilled with 2.5 mg cSiO2 or saline vehicle. Cohorts were terminated at 7 or 28 days post-cSiO2 instillation (PI) and lungs analyzed for prostaglandins, cytokines/chemokines, gene expression, differential cell counts, histopathology, and autoantibodies.

Results: cSiO2-treatment induced prostaglandins, cytokines/chemokine, proinflammatory gene expression, CD206+ monocytes, Ly6B.2+ neutrophils, CD3+ T cells, CD45R+ B cells, centriacinar inflammation, collagen deposition, ectopic lymphoid structure neogenesis, and autoantibodies. While TPPU effectively inhibited sEH as reflected by skewed lipidomic profile in lung and decreased cSiO2-induced monocytes, neutrophils, and lymphocytes in lung lavage fluid, it did not significantly impact other biomarkers.

Discussion: cSiO2 evoked robust pulmonary inflammation and fibrosis in NZBWF1 mice that was evident at 7 days PI and progressed to ELS development and autoimmunity by 28 days PI. sEH inhibition by TPPU modestly suppressed cSiO2-induced cellularity changes and pulmonary fibrosis. However, TPPU did not affect ELS formation or autoantibody responses, suggesting sEH minimally impacts cSiO2-triggered lung inflammation, fibrosis, and early autoimmunity in our model.

目的:给狼疮易感基因 NZBWF1 小鼠急性鼻内灌注结晶二氧化硅(cSiO2)会引发强烈的肺部炎症,从而导致自身免疫。之前在其他临床前模型中进行的研究表明,抑制可溶性环氧化物水解酶(sEH)会上调促进缓解的脂质代谢物,从而对肺部炎症起到保护作用。在此,我们在 NZBWF1 小鼠中评估了急性 IN cSiO2 暴露与选择性环氧化物水解酶抑制剂 TPPU 的作用如何影响炎症、纤维化和自身免疫的脂质组、转录物组、蛋白质组和组织病理学生物标志物:6周大的雌性NZBWF1小鼠被喂食对照组或添加TPPU的饲料2周,然后IN灌注2.5 mg cSiO2或生理盐水载体。结果:二氧化硅处理诱导前列腺素、细胞因子/凝血因子、促炎基因表达、CD206+单核细胞、Ly6B.2+中性粒细胞、CD3+中性粒细胞、CD4+中性粒细胞、CD5+中性粒细胞、CD7+中性粒细胞、CD8+中性粒细胞和CD9+中性粒细胞。+中性粒细胞、CD3+ T 细胞、CD45R+ B 细胞、中心炎、胶原沉积、异位淋巴结构新生和自身抗体。TPPU能有效抑制sEH,这体现在肺部脂质体谱的偏斜上,并能减少cSiO2诱导的肺灌洗液中的单核细胞、中性粒细胞和淋巴细胞,但对其他生物标志物没有显著影响。讨论:cSiO2诱发了NZBWF1小鼠严重的肺部炎症和纤维化,这种炎症和纤维化在7天PI时就很明显,到28天PI时发展为ELS和自身免疫。然而,TPPU并不影响ELS的形成或自身抗体反应,这表明在我们的模型中,sEH对cSiO2诱发的肺部炎症、纤维化和早期自身免疫的影响微乎其微。
{"title":"Impact of soluble epoxide hydrolase inhibition on silica-induced pulmonary fibrosis, ectopic lymphoid neogenesis, and autoantibody production in lupus-prone mice.","authors":"Olivia F McDonald, James G Wagner, Ryan P Lewandowski, Lauren K Heine, Vanessa Estrada, Elham Pourmand, Megha Singhal, Jack R Harkema, Kin Sing Stephen Lee, James J Pestka","doi":"10.1080/08958378.2024.2413373","DOIUrl":"10.1080/08958378.2024.2413373","url":null,"abstract":"<p><strong>Objective: </strong>Acute intranasal (IN) instillation of lupus-prone NZBWF1 mice with crystalline silica (cSiO<sub>2</sub>) triggers robust lung inflammation that drives autoimmunity. Prior studies in other preclinical models show that soluble epoxide hydrolase (sEH) inhibition upregulates pro-resolving lipid metabolites that are protective against pulmonary inflammation. Herein, we assessed in NZBWF1 mice how acute IN cSiO<sub>2</sub> exposure with or without the selective sEH inhibitor TPPU influences lipidomic, transcriptomic, proteomic, and histopathological biomarkers of inflammation, fibrosis, and autoimmunity.</p><p><strong>Methods: </strong>Female 6-week-old NZBWF1 mice were fed control or TPPU-supplemented diets for 2 weeks then IN instilled with 2.5 mg cSiO<sub>2</sub> or saline vehicle. Cohorts were terminated at 7 or 28 days post-cSiO<sub>2</sub> instillation (PI) and lungs analyzed for prostaglandins, cytokines/chemokines, gene expression, differential cell counts, histopathology, and autoantibodies.</p><p><strong>Results: </strong>cSiO<sub>2</sub>-treatment induced prostaglandins, cytokines/chemokine, proinflammatory gene expression, CD206<sup>+</sup> monocytes, Ly6B.2<sup>+</sup> neutrophils, CD3<sup>+</sup> T cells, CD45R<sup>+</sup> B cells, centriacinar inflammation, collagen deposition, ectopic lymphoid structure neogenesis, and autoantibodies. While TPPU effectively inhibited sEH as reflected by skewed lipidomic profile in lung and decreased cSiO<sub>2</sub>-induced monocytes, neutrophils, and lymphocytes in lung lavage fluid, it did not significantly impact other biomarkers.</p><p><strong>Discussion: </strong>cSiO<sub>2</sub> evoked robust pulmonary inflammation and fibrosis in NZBWF1 mice that was evident at 7 days PI and progressed to ELS development and autoimmunity by 28 days PI. sEH inhibition by TPPU modestly suppressed cSiO<sub>2</sub>-induced cellularity changes and pulmonary fibrosis. However, TPPU did not affect ELS formation or autoantibody responses, suggesting sEH minimally impacts cSiO<sub>2</sub>-triggered lung inflammation, fibrosis, and early autoimmunity in our model.</p>","PeriodicalId":13561,"journal":{"name":"Inhalation Toxicology","volume":" ","pages":"442-460"},"PeriodicalIF":2.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11606782/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142464304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bergapten attenuates sepsis-induced acute lung injury in mice by regulating Th17/Treg balance. Bergapten 通过调节 Th17/Treg 平衡减轻败血症诱发的小鼠急性肺损伤。
IF 2 4区 医学 Q4 TOXICOLOGY Pub Date : 2024-08-01 Epub Date: 2024-10-17 DOI: 10.1080/08958378.2024.2400479
Shanqiu Shi, Rui Deng, Renchun Huang, Shitai Zhou

Background: The abnormality of the immune system caused by infection is a contributor to the organ dysfunctions associated with sepsis. The balance between Th17/Treg cells is essential for maintaining immune homeostasis. Bergapten is a natural furocoumarin and has been reported to alleviate the Th17/Treg imbalance. Here, we explored the effects of bergapten on the inflammation and immune state in mouse models of sepsis.

Methods: The model was established using the cecal ligation and puncture method. Mice were administered 30 mg/kg bergapten. Histological examination, RT-qPCR, enzyme-linked immunosorbent assay, immunoblotting, immunofluorescence, immunohistochemistry, and flow cytometry were used to evaluate the effects of bergapten in vivo.

Results: Bergapten ameliorated lung damage, reduced lung wet/dry weight ratio, inhibited myeloperoxidase activity, and reduced inflammatory cell infiltration. Bergapten also restrained sepsis-induced inflammation via inhibition of inflammatory cytokines and NF-κB signaling. These effects were accompanied by the restored Th17/Treg balance induced by bergapten. Bergapten decreased the number of Th17 cells and elevated the number of Tregs, and this effect was mediated by the signal transducer and activator of transcription 5 (STAT5)/Forkhead box P3 (Foxp3) and STAT3/retinoid-related orphan receptor-γt (RORγt) pathways.

Conclusions: Bergapten exerted anti-inflammatory effects in acute lung injury by improving the Th17/Treg balance, which suggested a potential of bergapten as an immunomodulatory drug treating sepsis-associated diseases.

背景:感染引起的免疫系统异常是导致败血症相关器官功能障碍的原因之一。Th17/Treg 细胞之间的平衡对维持免疫平衡至关重要。Bergapten 是一种天然呋喃香豆素,有报道称它能缓解 Th17/Treg 细胞的失衡。在此,我们探讨了小檗碱对败血症小鼠模型中炎症和免疫状态的影响:方法:采用盲肠结扎和穿刺法建立小鼠脓毒症模型。给小鼠注射 30 mg/kg bergapten。采用组织学检查、RT-qPCR、酶联免疫吸附试验、免疫印迹、免疫荧光、免疫组化和流式细胞术等方法评估bergapten在体内的作用:结果:bergapten 能改善肺损伤,降低肺干湿重量比,抑制髓过氧化物酶活性,减少炎症细胞浸润。Bergapten 还能通过抑制炎性细胞因子和 NF-κB 信号转导抑制败血症诱发的炎症。贝加普坦还能恢复 Th17/Treg 的平衡。Bergapten减少了Th17细胞的数量,增加了Treg细胞的数量,这种效应是由信号转导和激活转录5(STAT5)/叉头盒P3(Foxp3)和STAT3/视黄醇相关孤儿受体-γt(RORγt)途径介导的:小檗碱通过改善Th17/Treg平衡在急性肺损伤中发挥抗炎作用,这表明小檗碱有可能成为治疗脓毒症相关疾病的免疫调节药物。
{"title":"Bergapten attenuates sepsis-induced acute lung injury in mice by regulating Th17/Treg balance.","authors":"Shanqiu Shi, Rui Deng, Renchun Huang, Shitai Zhou","doi":"10.1080/08958378.2024.2400479","DOIUrl":"10.1080/08958378.2024.2400479","url":null,"abstract":"<p><strong>Background: </strong>The abnormality of the immune system caused by infection is a contributor to the organ dysfunctions associated with sepsis. The balance between Th17/Treg cells is essential for maintaining immune homeostasis. Bergapten is a natural furocoumarin and has been reported to alleviate the Th17/Treg imbalance. Here, we explored the effects of bergapten on the inflammation and immune state in mouse models of sepsis.</p><p><strong>Methods: </strong>The model was established using the cecal ligation and puncture method. Mice were administered 30 mg/kg bergapten. Histological examination, RT-qPCR, enzyme-linked immunosorbent assay, immunoblotting, immunofluorescence, immunohistochemistry, and flow cytometry were used to evaluate the effects of bergapten <i>in vivo</i>.</p><p><strong>Results: </strong>Bergapten ameliorated lung damage, reduced lung wet/dry weight ratio, inhibited myeloperoxidase activity, and reduced inflammatory cell infiltration. Bergapten also restrained sepsis-induced inflammation via inhibition of inflammatory cytokines and NF-κB signaling. These effects were accompanied by the restored Th17/Treg balance induced by bergapten. Bergapten decreased the number of Th17 cells and elevated the number of Tregs, and this effect was mediated by the signal transducer and activator of transcription 5 (STAT5)/Forkhead box P3 (Foxp3) and STAT3/retinoid-related orphan receptor-γt (RORγt) pathways.</p><p><strong>Conclusions: </strong>Bergapten exerted anti-inflammatory effects in acute lung injury by improving the Th17/Treg balance, which suggested a potential of bergapten as an immunomodulatory drug treating sepsis-associated diseases.</p>","PeriodicalId":13561,"journal":{"name":"Inhalation Toxicology","volume":" ","pages":"421-430"},"PeriodicalIF":2.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142464302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Co-existing ambient fine particulate matter exacerbated electronic cigarette toxicity on human respiratory cells. 同时存在的环境细颗粒物加剧了电子香烟对人体呼吸道细胞的毒性。
IF 2 4区 医学 Q4 TOXICOLOGY Pub Date : 2024-08-01 Epub Date: 2024-10-21 DOI: 10.1080/08958378.2024.2416428
Guanghe Wang, Wenjing Liu, Yujie Cao, Wanqi Chen, Nuo Chen

Respiratory co-exposure to ambient PM2.5 and electronic cigarettes (e-cigarettes) frequently occurs in public. However, the combined effects on human respiratory health have not been well documented. To discuss potential co-effects and possible biological mechanisms, A549/THP-1 co-cultures and BEAS-2B cells were exposed to unvapedtobacco or mint-flavored e-liquids (0-7.2% v/v), e-cigarette aerosol extract (ECE, 0-50% v/v), PM2.5 (60 μg/mL), or PM2.5 + ECE for 24 h. Cell viability assessments on e-liquids, ECE, PM2.5 + ECE showed that the mint flavor exhibited higher cytotoxicity compared to the tobacco flavor in both A549/THP-1 and BEAS-2B. However, the influence of flavors on ROS levels and mRNA expression of inflammatory markers (IL-6, TNF-α, IL-8, IL-1β) after ECE exposure demonstrated inconsistency in the two cell models. PM2.5 + ECE treatment notably elevated ROS production and inflammation responses compared to ECE alone exposure. Only co-exposure induced a significant increase in nuclear transcription factor-κB p65 (NF-κB p65) and NOD-like receptor 3 (NLRP3) protein expression regardless of flavors. Our results indicate that PM2.5-treated cells exacerbate the adverse effects induced by ECE in both A549/THP-1 and BEAS-2B cells. Flavors in unvaped e-liquids affect cytotoxicity, oxidative stress and inflammation response, but these effects vary depending on the vaping process and the specific cell line.

在公共场合,呼吸系统经常会同时接触到环境中的 PM2.5 和电子香烟(电子烟)。然而,其对人类呼吸系统健康的综合影响还没有很好的记录。为了讨论潜在的共同效应和可能的生物机制,A549/THP-1共培养物和BEAS-2B细胞暴露于未吸食烟草或薄荷味电子液体(0-7.2% v/v)、电子烟气溶胶提取物(ECE,0-50% v/v)、PM2.对电子烟液、ECE、PM2.5 + ECE 进行的细胞活力评估显示,薄荷味比烟草味对 A549/THP-1 和 BEAS-2B 的细胞毒性更高。然而,在暴露于 ECE 后,两种香料对 ROS 水平和炎症标志物(IL-6、TNF-α、IL-8、IL-1β)mRNA 表达的影响在两种细胞模型中表现不一致。与单独暴露于 ECE 相比,PM2.5 + ECE 处理明显增加了 ROS 的产生和炎症反应。只有共同暴露才会诱导核转录因子-κB p65(NF-κB p65)和类NOD受体3(NLRP3)蛋白表达的显著增加,而与各种口味无关。我们的研究结果表明,PM2.5处理过的细胞会加剧ECE对A549/THP-1和BEAS-2B细胞诱导的不良影响。未经吸食的电子液体中的香料会影响细胞毒性、氧化应激和炎症反应,但这些影响因吸食过程和特定细胞系而异。
{"title":"Co-existing ambient fine particulate matter exacerbated electronic cigarette toxicity on human respiratory cells.","authors":"Guanghe Wang, Wenjing Liu, Yujie Cao, Wanqi Chen, Nuo Chen","doi":"10.1080/08958378.2024.2416428","DOIUrl":"10.1080/08958378.2024.2416428","url":null,"abstract":"<p><p>Respiratory co-exposure to ambient PM<sub>2.5</sub> and electronic cigarettes (e-cigarettes) frequently occurs in public. However, the combined effects on human respiratory health have not been well documented. To discuss potential co-effects and possible biological mechanisms, A549/THP-1 co-cultures and BEAS-2B cells were exposed to unvapedtobacco or mint-flavored e-liquids (0-7.2% v/v), e-cigarette aerosol extract (ECE, 0-50% v/v), PM<sub>2.5</sub> (60 μg/mL), or PM<sub>2.5</sub> + ECE for 24 h. Cell viability assessments on e-liquids, ECE, PM<sub>2.5</sub> + ECE showed that the mint flavor exhibited higher cytotoxicity compared to the tobacco flavor in both A549/THP-1 and BEAS-2B. However, the influence of flavors on ROS levels and mRNA expression of inflammatory markers (IL-6, TNF-α, IL-8, IL-1β) after ECE exposure demonstrated inconsistency in the two cell models. PM<sub>2.5</sub> + ECE treatment notably elevated ROS production and inflammation responses compared to ECE alone exposure. Only co-exposure induced a significant increase in nuclear transcription factor-κB p65 (NF-κB p65) and NOD-like receptor 3 (NLRP3) protein expression regardless of flavors. Our results indicate that PM<sub>2.5</sub>-treated cells exacerbate the adverse effects induced by ECE in both A549/THP-1 and BEAS-2B cells. Flavors in unvaped e-liquids affect cytotoxicity, oxidative stress and inflammation response, but these effects vary depending on the vaping process and the specific cell line.</p>","PeriodicalId":13561,"journal":{"name":"Inhalation Toxicology","volume":" ","pages":"461-473"},"PeriodicalIF":2.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142464303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gene expression changes in mouse lung induced by subacute inhalation of PM10-rich particulate matter. 亚急性吸入富含 PM10 的颗粒物诱导的小鼠肺部基因表达变化。
IF 2 4区 医学 Q4 TOXICOLOGY Pub Date : 2024-08-01 Epub Date: 2024-10-10 DOI: 10.1080/08958378.2024.2410736
Jong-Uk Lee, Jisu Hong, Eunji Park, Junyeong Baek, Ye Min Choi, Su Sie Chin, Ki-Joon Jeon, Woo-Jin Kim, Sung Woo Park, Sung Hwan Jeong

Introduction: Particulate matter (PM) air pollution is associated with an increased incidence of lung diseases, but the underlying mechanisms have not been fully elucidated. In this study, a mouse model of subacute lung inflammation was employed to investigate the cellular responses and gene expression changes induced by exposure to natural ambient air pollution.

Methods: C57BL/6J mice were exposed to road dust (primarily PM10) at 150 µg/m³ for 21 days (8 h/day) through a nose-only inhalation exposure system. Lung tissues were analyzed for the expression of proinflammatory signaling, oxidative stress, and fibrosis markers. RNA-sequencing analysis was conducted to identify differentially expressed genes (DEGs). A gene ontology over-representation analysis was performed to identify the altered genetic pathways.

Results: Elevated levels of proinflammatory cytokines, including IL-1β, IL-6, and TNF-α, and an increase in phosphorylated MAPK were determined in the road dust exposure group compared to the control group. Histopathological examinations revealed more severe lung inflammation and damage in the exposed mice, including fibrosis and bronchiolar hyperplasia. Gene expression profiling identified 108 DEGs, with decreases in most except genes such as Krt15 and Reg3g. The protein-protein interaction network analysis together with text-mining identified 18 key hub genes, associated with fatty acid oxidation, lipid metabolism, and peroxisomes.

Conclusion: This study identified key genes, signaling pathways, and cellular responses in mouse lung affected by road dust exposure. These findings contribute to a deeper understanding of the transcriptional and cellular responses induced by subacute exposure to the PM in road dust.

导言:颗粒物(PM)空气污染与肺部疾病发病率的增加有关,但其潜在机制尚未完全阐明。本研究采用小鼠亚急性肺部炎症模型,研究暴露于自然环境空气污染诱导的细胞反应和基因表达变化:方法:通过纯鼻吸入暴露系统,将 C57BL/6J 小鼠暴露于浓度为 150 µg/m³ 的道路灰尘(主要是 PM10)中 21 天(每天 8 小时)。分析了肺组织中促炎信号、氧化应激和纤维化标记物的表达。进行了 RNA 序列分析,以确定差异表达基因 (DEG)。对基因本体进行了过度表达分析,以确定发生改变的基因通路:结果:与对照组相比,道路粉尘暴露组的促炎细胞因子(包括 IL-1β、IL-6 和 TNF-α)水平升高,磷酸化 MAPK 增加。组织病理学检查显示,暴露组小鼠的肺部炎症和损伤更为严重,包括纤维化和支气管增生。基因表达谱分析确定了 108 个 DEGs,除 Krt15 和 Reg3g 等基因外,大多数基因的表达量都有所下降。蛋白质-蛋白质相互作用网络分析和文本挖掘发现了18个关键枢纽基因,它们与脂肪酸氧化、脂质代谢和过氧化物酶体有关:本研究发现了受道路尘埃影响的小鼠肺部的关键基因、信号通路和细胞反应。这些发现有助于加深对亚急性暴露于道路扬尘中的可吸入颗粒物所诱导的转录和细胞反应的理解。
{"title":"Gene expression changes in mouse lung induced by subacute inhalation of PM<sub>10</sub>-rich particulate matter.","authors":"Jong-Uk Lee, Jisu Hong, Eunji Park, Junyeong Baek, Ye Min Choi, Su Sie Chin, Ki-Joon Jeon, Woo-Jin Kim, Sung Woo Park, Sung Hwan Jeong","doi":"10.1080/08958378.2024.2410736","DOIUrl":"10.1080/08958378.2024.2410736","url":null,"abstract":"<p><strong>Introduction: </strong>Particulate matter (PM) air pollution is associated with an increased incidence of lung diseases, but the underlying mechanisms have not been fully elucidated. In this study, a mouse model of subacute lung inflammation was employed to investigate the cellular responses and gene expression changes induced by exposure to natural ambient air pollution.</p><p><strong>Methods: </strong>C57BL/6J mice were exposed to road dust (primarily PM10) at 150 µg/m³ for 21 days (8 h/day) through a nose-only inhalation exposure system. Lung tissues were analyzed for the expression of proinflammatory signaling, oxidative stress, and fibrosis markers. RNA-sequencing analysis was conducted to identify differentially expressed genes (DEGs). A gene ontology over-representation analysis was performed to identify the altered genetic pathways.</p><p><strong>Results: </strong>Elevated levels of proinflammatory cytokines, including IL-1β, IL-6, and TNF-α, and an increase in phosphorylated MAPK were determined in the road dust exposure group compared to the control group. Histopathological examinations revealed more severe lung inflammation and damage in the exposed mice, including fibrosis and bronchiolar hyperplasia. Gene expression profiling identified 108 DEGs, with decreases in most except genes such as Krt15 and Reg3g. The protein-protein interaction network analysis together with text-mining identified 18 key hub genes, associated with fatty acid oxidation, lipid metabolism, and peroxisomes.</p><p><strong>Conclusion: </strong>This study identified key genes, signaling pathways, and cellular responses in mouse lung affected by road dust exposure. These findings contribute to a deeper understanding of the transcriptional and cellular responses induced by subacute exposure to the PM in road dust.</p>","PeriodicalId":13561,"journal":{"name":"Inhalation Toxicology","volume":" ","pages":"431-441"},"PeriodicalIF":2.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142400165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The fate of an inhaled cigarette puff in the human respiratory tract. 吸入的烟雾在人体呼吸道中的去向。
IF 2 4区 医学 Q4 TOXICOLOGY Pub Date : 2024-07-01 Epub Date: 2024-06-23 DOI: 10.1080/08958378.2024.2367419
Bahman Asgharian, Owen Price, Scott Wasdo, Cissy Li, Kamau O Peters, Ryan M Haskins, Susan Chemerynski, Jeffry Schroeter

Objective: Cigarette smoking can lead to a host of adverse health effects such as lung and heart disease. Increased lung cancer risk is associated with inhalation of carcinogens present in a puff of smoke. These carcinogenic compounds deposit in the lung at different sites and trigger a cascade of events leading to adverse outcomes. Understanding the site-specific deposition of various smoke constituents will inform the study of respiratory diseases from cigarette smoking. We previously developed a deposition model for inhalation of aerosol from electronic nicotine delivery systems. In this study, the model was modified to simulate inhalation of cigarette smoke consisting of soluble and insoluble tar, nicotine, and cigarette-specific constituents that are known or possible human carcinogens.

Materials and methods: The deposition model was further modified to account for nicotine protonation and other cigarette-specific physics-based mechanisms that affect smoke deposition. Model predictions showed a total respiratory tract uptake in the lung for formaldehyde (99%), nicotine (80%), and benzo[a]pyrene (60%).

Results: The site of deposition and uptake depended primarily on the constituent's saturation vapor pressure. High vapor pressure constituents such as formaldehyde were preferentially absorbed in the oral cavity and proximal lung regions, while low vapor pressure constituents such as benzo[a]pyrene were deposited in the deep lung regions. Model predictions of exhaled droplet size, droplet retention, nicotine retention, and uptake of aldehydes compared favorably with experimental data.

Conclusion: The deposition model can be integrated into exposure assessments and other studies that evaluate potential adverse health effects from cigarette smoking.

目的:吸烟可导致肺部和心脏疾病等一系列不良健康影响。肺癌风险的增加与吸入一口烟中的致癌物质有关。这些致癌化合物沉积在肺部的不同部位,引发一系列事件,导致不良后果。了解各种烟雾成分的特定沉积部位将为研究吸烟引起的呼吸系统疾病提供信息。我们之前开发了一个电子尼古丁递送系统气溶胶吸入沉积模型。在这项研究中,我们对该模型进行了修改,以模拟吸入由可溶性和不可溶性焦油、尼古丁以及已知或可能的人类致癌物--香烟特有成分组成的香烟烟雾:对沉积模型进行了进一步修改,以考虑尼古丁质子化和其他影响烟雾沉积的香烟特定物理机制。模型预测结果显示,肺部呼吸道对甲醛(99%)、尼古丁(80%)和苯并[a]芘(60%)的总吸收率:沉积和吸收的部位主要取决于成分的饱和蒸汽压。高蒸汽压成分(如甲醛)优先在口腔和肺部近端吸收,而低蒸汽压成分(如苯并[a]芘)则沉积在肺部深层。模型对呼出液滴大小、液滴滞留、尼古丁滞留和醛类吸收的预测与实验数据比较一致:沉积模型可用于暴露评估和其他研究,以评估吸烟对健康的潜在不良影响。
{"title":"The fate of an inhaled cigarette puff in the human respiratory tract.","authors":"Bahman Asgharian, Owen Price, Scott Wasdo, Cissy Li, Kamau O Peters, Ryan M Haskins, Susan Chemerynski, Jeffry Schroeter","doi":"10.1080/08958378.2024.2367419","DOIUrl":"10.1080/08958378.2024.2367419","url":null,"abstract":"<p><strong>Objective: </strong>Cigarette smoking can lead to a host of adverse health effects such as lung and heart disease. Increased lung cancer risk is associated with inhalation of carcinogens present in a puff of smoke. These carcinogenic compounds deposit in the lung at different sites and trigger a cascade of events leading to adverse outcomes. Understanding the site-specific deposition of various smoke constituents will inform the study of respiratory diseases from cigarette smoking. We previously developed a deposition model for inhalation of aerosol from electronic nicotine delivery systems. In this study, the model was modified to simulate inhalation of cigarette smoke consisting of soluble and insoluble tar, nicotine, and cigarette-specific constituents that are known or possible human carcinogens.</p><p><strong>Materials and methods: </strong>The deposition model was further modified to account for nicotine protonation and other cigarette-specific physics-based mechanisms that affect smoke deposition. Model predictions showed a total respiratory tract uptake in the lung for formaldehyde (99%), nicotine (80%), and benzo[a]pyrene (60%).</p><p><strong>Results: </strong>The site of deposition and uptake depended primarily on the constituent's saturation vapor pressure. High vapor pressure constituents such as formaldehyde were preferentially absorbed in the oral cavity and proximal lung regions, while low vapor pressure constituents such as benzo[a]pyrene were deposited in the deep lung regions. Model predictions of exhaled droplet size, droplet retention, nicotine retention, and uptake of aldehydes compared favorably with experimental data.</p><p><strong>Conclusion: </strong>The deposition model can be integrated into exposure assessments and other studies that evaluate potential adverse health effects from cigarette smoking.</p>","PeriodicalId":13561,"journal":{"name":"Inhalation Toxicology","volume":" ","pages":"378-390"},"PeriodicalIF":2.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141440452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effect of enriched versus depleted housing on eucalyptus smoke-induced cardiovascular dysfunction in mice. 高密度饲养与低密度饲养对桉树烟雾诱发的小鼠心血管功能障碍的影响。
IF 2 4区 医学 Q4 TOXICOLOGY Pub Date : 2024-07-01 Epub Date: 2024-05-22 DOI: 10.1080/08958378.2024.2352748
Molly E Harmon, Michelle Fiamingo, Sydnie Toler, Kaleb Lee, Yongho Kim, Brandi Martin, Ian Gilmour, Aimen K Farraj, Mehdi S Hazari

Objectives: Living conditions play a major role in health and well-being, particularly for the cardiovascular and pulmonary systems. Depleted housing contributes to impairment and development of disease, but how it impacts body resiliency during exposure to environmental stressors is unknown. This study examined the effect of depleted (DH) versus enriched housing (EH) on cardiopulmonary function and subsequent responses to wildfire smoke. Materials and Methods: Two cohorts of healthy female mice, one of them surgically implanted with radiotelemeters for the measurement of electrocardiogram, body temperature (Tco) and activity, were housed in either DH or EH for 7 weeks. Telemetered mice were exposed for 1 h to filtered air (FA) and then flaming eucalyptus wildfire smoke (WS) while untelemetered mice, which were used for ventilatory assessment and tissue collection, were exposed to either FA or WS. Animals were continuously monitored for 5-7 days after exposure. Results: EH prevented a decrease in Tco after radiotelemetry surgery. EH mice also had significantly higher activity levels and lower heart rate during and after FA and WS. Moreover, EH caused a decreased number of cardiac arrhythmias during WS. WS caused ventilatory depression in DH mice but not EH mice. Housing enrichment also upregulated the expression of cardioprotective genes in the heart. Conclusions: The results of this study indicate that housing conditions impact overall health and cardiopulmonary function. More importantly, depleted housing appears to worsen the response to air pollution. Thus, non-chemical factors should be considered when assessing the susceptibility of populations, especially when it comes to extreme environmental events.

目标:居住条件对健康和福祉起着重要作用,尤其是对心血管和肺部系统。贫化饲养条件会导致机能受损和疾病的发生,但它如何影响暴露于环境应激因素时的身体恢复能力尚不清楚。本研究考察了贫化住房(DH)和富化住房(EH)对心肺功能的影响以及随后对野火烟雾的反应。材料与方法:将两组健康的雌性小鼠(其中一组通过手术植入了用于测量心电图、体温(Tco)和活动的无线电遥测仪)分别饲养在DH或EH中7周。遥测小鼠暴露在过滤空气(FA)中 1 小时,然后暴露在燃烧的桉树野火烟雾(WS)中 1 小时,而用于通气评估和组织采集的未遥测小鼠则暴露在 FA 或 WS 中。暴露后对动物进行 5-7 天的连续监测。结果EH 阻止了放射性遥测手术后 Tco 的下降。EH小鼠在FA和WS期间和之后的活动水平也明显提高,心率降低。此外,EH 还能减少 WS 期间的心律失常次数。WS会导致DH小鼠呼吸抑制,但不会导致EH小鼠呼吸抑制。居住环境的富集还能上调心脏中心脏保护基因的表达。结论本研究结果表明,饲养条件会影响整体健康和心肺功能。更重要的是,贫化的饲养条件似乎会加重对空气污染的反应。因此,在评估人群的易感性时应考虑非化学因素,尤其是在极端环境事件发生时。
{"title":"The effect of enriched versus depleted housing on eucalyptus smoke-induced cardiovascular dysfunction in mice.","authors":"Molly E Harmon, Michelle Fiamingo, Sydnie Toler, Kaleb Lee, Yongho Kim, Brandi Martin, Ian Gilmour, Aimen K Farraj, Mehdi S Hazari","doi":"10.1080/08958378.2024.2352748","DOIUrl":"10.1080/08958378.2024.2352748","url":null,"abstract":"<p><p><b>Objectives:</b> Living conditions play a major role in health and well-being, particularly for the cardiovascular and pulmonary systems. Depleted housing contributes to impairment and development of disease, but how it impacts body resiliency during exposure to environmental stressors is unknown. This study examined the effect of depleted (DH) versus enriched housing (EH) on cardiopulmonary function and subsequent responses to wildfire smoke. <b>Materials and Methods:</b> Two cohorts of healthy female mice, one of them surgically implanted with radiotelemeters for the measurement of electrocardiogram, body temperature (Tco) and activity, were housed in either DH or EH for 7 weeks. Telemetered mice were exposed for 1 h to filtered air (FA) and then flaming eucalyptus wildfire smoke (WS) while untelemetered mice, which were used for ventilatory assessment and tissue collection, were exposed to either FA or WS. Animals were continuously monitored for 5-7 days after exposure. <b>Results:</b> EH prevented a decrease in Tco after radiotelemetry surgery. EH mice also had significantly higher activity levels and lower heart rate during and after FA and WS. Moreover, EH caused a decreased number of cardiac arrhythmias during WS. WS caused ventilatory depression in DH mice but not EH mice. Housing enrichment also upregulated the expression of cardioprotective genes in the heart. <b>Conclusions:</b> The results of this study indicate that housing conditions impact overall health and cardiopulmonary function. More importantly, depleted housing appears to worsen the response to air pollution. Thus, non-chemical factors should be considered when assessing the susceptibility of populations, especially when it comes to extreme environmental events.</p>","PeriodicalId":13561,"journal":{"name":"Inhalation Toxicology","volume":" ","pages":"355-366"},"PeriodicalIF":2.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11632382/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141079941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Inhalation Toxicology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1