Mapping and Summarizing the Research on AI Systems for Automating Medical History Taking and Triage: Scoping Review.

IF 5.8 2区 医学 Q1 HEALTH CARE SCIENCES & SERVICES Journal of Medical Internet Research Pub Date : 2025-02-06 DOI:10.2196/53741
Elin Siira, Hanna Johansson, Jens Nygren
{"title":"Mapping and Summarizing the Research on AI Systems for Automating Medical History Taking and Triage: Scoping Review.","authors":"Elin Siira, Hanna Johansson, Jens Nygren","doi":"10.2196/53741","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The integration of artificial intelligence (AI) systems for automating medical history taking and triage can significantly enhance patient flow in health care systems. Despite the promising performance of numerous AI studies, only a limited number of these systems have been successfully integrated into routine health care practice. To elucidate how AI systems can create value in this context, it is crucial to identify the current state of knowledge, including the readiness of these systems, the facilitators of and barriers to their implementation, and the perspectives of various stakeholders involved in their development and deployment.</p><p><strong>Objective: </strong>This study aims to map and summarize empirical research on AI systems designed for automating medical history taking and triage in health care settings.</p><p><strong>Methods: </strong>The study was conducted following the framework proposed by Arksey and O'Malley and adhered to the PRISMA-ScR (Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews) guidelines. A comprehensive search of 5 databases-PubMed, CINAHL, PsycINFO, Scopus, and Web of Science-was performed. A detailed protocol was established before the review to ensure methodological rigor.</p><p><strong>Results: </strong>A total of 1248 research publications were identified and screened. Of these, 86 (6.89%) met the eligibility criteria. Notably, most (n=63, 73%) studies were published between 2020 and 2022, with a significant concentration on emergency care (n=32, 37%). Other clinical contexts included radiology (n=12, 14%) and primary care (n=6, 7%). Many (n=15, 17%) studies did not specify a clinical context. Most (n=31, 36%) studies used retrospective designs, while others (n=34, 40%) did not specify their methodologies. The predominant type of AI system identified was the hybrid model (n=68, 79%), with forecasting (n=40, 47%) and recognition (n=36, 42%) being the most common tasks performed. While most (n=70, 81%) studies included patient populations, only 1 (1%) study investigated patients' views on AI-based medical history taking and triage, and 2 (2%) studies considered health care professionals' perspectives. Furthermore, only 6 (7%) studies validated or demonstrated AI systems in relevant clinical settings through real-time model testing, workflow implementation, clinical outcome evaluation, or integration into practice. Most (n=76, 88%) studies were concerned with the prototyping, development, or validation of AI systems. In total, 4 (5%) studies were reviews of several empirical studies conducted in different clinical settings. The facilitators and barriers to AI system implementation were categorized into 4 themes: technical aspects, contextual and cultural considerations, end-user engagement, and evaluation processes.</p><p><strong>Conclusions: </strong>This review highlights current trends, stakeholder perspectives, stages of innovation development, and key influencing factors related to implementing AI systems in health care. The identified literature gaps regarding stakeholder perspectives and the limited research on AI systems for automating medical history taking and triage indicate significant opportunities for further investigation and development in this evolving field.</p>","PeriodicalId":16337,"journal":{"name":"Journal of Medical Internet Research","volume":"27 ","pages":"e53741"},"PeriodicalIF":5.8000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Internet Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2196/53741","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The integration of artificial intelligence (AI) systems for automating medical history taking and triage can significantly enhance patient flow in health care systems. Despite the promising performance of numerous AI studies, only a limited number of these systems have been successfully integrated into routine health care practice. To elucidate how AI systems can create value in this context, it is crucial to identify the current state of knowledge, including the readiness of these systems, the facilitators of and barriers to their implementation, and the perspectives of various stakeholders involved in their development and deployment.

Objective: This study aims to map and summarize empirical research on AI systems designed for automating medical history taking and triage in health care settings.

Methods: The study was conducted following the framework proposed by Arksey and O'Malley and adhered to the PRISMA-ScR (Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews) guidelines. A comprehensive search of 5 databases-PubMed, CINAHL, PsycINFO, Scopus, and Web of Science-was performed. A detailed protocol was established before the review to ensure methodological rigor.

Results: A total of 1248 research publications were identified and screened. Of these, 86 (6.89%) met the eligibility criteria. Notably, most (n=63, 73%) studies were published between 2020 and 2022, with a significant concentration on emergency care (n=32, 37%). Other clinical contexts included radiology (n=12, 14%) and primary care (n=6, 7%). Many (n=15, 17%) studies did not specify a clinical context. Most (n=31, 36%) studies used retrospective designs, while others (n=34, 40%) did not specify their methodologies. The predominant type of AI system identified was the hybrid model (n=68, 79%), with forecasting (n=40, 47%) and recognition (n=36, 42%) being the most common tasks performed. While most (n=70, 81%) studies included patient populations, only 1 (1%) study investigated patients' views on AI-based medical history taking and triage, and 2 (2%) studies considered health care professionals' perspectives. Furthermore, only 6 (7%) studies validated or demonstrated AI systems in relevant clinical settings through real-time model testing, workflow implementation, clinical outcome evaluation, or integration into practice. Most (n=76, 88%) studies were concerned with the prototyping, development, or validation of AI systems. In total, 4 (5%) studies were reviews of several empirical studies conducted in different clinical settings. The facilitators and barriers to AI system implementation were categorized into 4 themes: technical aspects, contextual and cultural considerations, end-user engagement, and evaluation processes.

Conclusions: This review highlights current trends, stakeholder perspectives, stages of innovation development, and key influencing factors related to implementing AI systems in health care. The identified literature gaps regarding stakeholder perspectives and the limited research on AI systems for automating medical history taking and triage indicate significant opportunities for further investigation and development in this evolving field.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
14.40
自引率
5.40%
发文量
654
审稿时长
1 months
期刊介绍: The Journal of Medical Internet Research (JMIR) is a highly respected publication in the field of health informatics and health services. With a founding date in 1999, JMIR has been a pioneer in the field for over two decades. As a leader in the industry, the journal focuses on digital health, data science, health informatics, and emerging technologies for health, medicine, and biomedical research. It is recognized as a top publication in these disciplines, ranking in the first quartile (Q1) by Impact Factor. Notably, JMIR holds the prestigious position of being ranked #1 on Google Scholar within the "Medical Informatics" discipline.
期刊最新文献
Subtyping Social Determinants of Health in the "All of Us" Program: Network Analysis and Visualization Study. Understanding Citizens' Response to Social Activities on Twitter in US Metropolises During the COVID-19 Recovery Phase Using a Fine-Tuned Large Language Model: Application of AI. Health IT Implementation and the Impact of the COVID-19 Pandemic on Clinician-IT Dynamics: Qualitative Study. Interventions for Digital Addiction: Umbrella Review of Meta-Analyses. Smart Pharmaceutical Monitoring System With Personalized Medication Schedules and Self-Management Programs for Patients With Diabetes: Development and Evaluation Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1