An Insight Into Unveiling Nano Luminescence for Industrial Dye Detection.

IF 3.1 4区 化学 Q2 BIOCHEMICAL RESEARCH METHODS Journal of Fluorescence Pub Date : 2025-09-01 Epub Date: 2025-02-07 DOI:10.1007/s10895-025-04151-y
E Safamariyam, K P Synumol, Anu Jayanthi Panicker, Mizaj Shabil Sha, Shabnam Roshan, Sarada Prasad Dakua, Vaisali Chandrasekar, Ajay Vikram Singh, Kishor Kumar Sadasivuni
{"title":"An Insight Into Unveiling Nano Luminescence for Industrial Dye Detection.","authors":"E Safamariyam, K P Synumol, Anu Jayanthi Panicker, Mizaj Shabil Sha, Shabnam Roshan, Sarada Prasad Dakua, Vaisali Chandrasekar, Ajay Vikram Singh, Kishor Kumar Sadasivuni","doi":"10.1007/s10895-025-04151-y","DOIUrl":null,"url":null,"abstract":"<p><p>Dye, a major contaminant from the textile, paper, and pulp industries, is a serious environmental and human health hazard. Because of their low cost, environmental friendliness, and sustainability, semiconductor nanoparticles are among the most effective photocatalysts for detecting dyes in wastewater. Quantum dots (QDs), particularly Carbon quantum dots (CQDs), have received a lot of attention due to their unique optical and electrical properties, making them excellent for applications such as sensing and detection. This paper describes a unique microwave-assisted method for synthesising CQDs in ambient reaction conditions, providing a fast, scalable, and passivation-free alternative to traditional methods. The CQDs were characterised using SEM, XRD, FTIR, UV-Vis spectrophotometry, and photoluminescence, which confirmed their uniform size distribution and outstanding optical characteristics. The CQDs had detection limits of 0.413 ppm for cresol red and 0.847 ppm for cresol purple, indicating great sensitivity and selectivity over a wide pH range. These findings propose a new, sustainable, and cost-effective alternative for tackling water pollution and its detrimental effects on aquatic ecosystems, hence increasing the use of Carbon QDs in environmental restoration.</p>","PeriodicalId":15800,"journal":{"name":"Journal of Fluorescence","volume":" ","pages":"8257-8268"},"PeriodicalIF":3.1000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12583409/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluorescence","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10895-025-04151-y","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Dye, a major contaminant from the textile, paper, and pulp industries, is a serious environmental and human health hazard. Because of their low cost, environmental friendliness, and sustainability, semiconductor nanoparticles are among the most effective photocatalysts for detecting dyes in wastewater. Quantum dots (QDs), particularly Carbon quantum dots (CQDs), have received a lot of attention due to their unique optical and electrical properties, making them excellent for applications such as sensing and detection. This paper describes a unique microwave-assisted method for synthesising CQDs in ambient reaction conditions, providing a fast, scalable, and passivation-free alternative to traditional methods. The CQDs were characterised using SEM, XRD, FTIR, UV-Vis spectrophotometry, and photoluminescence, which confirmed their uniform size distribution and outstanding optical characteristics. The CQDs had detection limits of 0.413 ppm for cresol red and 0.847 ppm for cresol purple, indicating great sensitivity and selectivity over a wide pH range. These findings propose a new, sustainable, and cost-effective alternative for tackling water pollution and its detrimental effects on aquatic ecosystems, hence increasing the use of Carbon QDs in environmental restoration.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纳米发光技术在工业染料检测中的应用。
染料是纺织、造纸和纸浆工业的主要污染物,严重危害环境和人类健康。由于其成本低、环境友好和可持续性,半导体纳米颗粒是检测废水中染料最有效的光催化剂之一。量子点(QDs),特别是碳量子点(CQDs),由于其独特的光学和电学性质,使其在传感和检测等应用中具有优异的性能,受到了广泛的关注。本文描述了一种在环境反应条件下合成CQDs的独特微波辅助方法,为传统方法提供了一种快速,可扩展且无钝化的替代方法。采用SEM、XRD、FTIR、UV-Vis分光光度、光致发光等方法对CQDs进行了表征,证实了CQDs的尺寸分布均匀,具有良好的光学特性。CQDs对甲酚红和甲酚紫的检出限分别为0.413 ppm和0.847 ppm,在较宽的pH范围内具有较高的灵敏度和选择性。这些发现为解决水污染及其对水生生态系统的不利影响提供了一种新的、可持续的、具有成本效益的替代方案,从而增加了碳量子点在环境恢复中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Fluorescence
Journal of Fluorescence 化学-分析化学
CiteScore
4.60
自引率
7.40%
发文量
203
审稿时长
5.4 months
期刊介绍: Journal of Fluorescence is an international forum for the publication of peer-reviewed original articles that advance the practice of this established spectroscopic technique. Topics covered include advances in theory/and or data analysis, studies of the photophysics of aromatic molecules, solvent, and environmental effects, development of stationary or time-resolved measurements, advances in fluorescence microscopy, imaging, photobleaching/recovery measurements, and/or phosphorescence for studies of cell biology, chemical biology and the advanced uses of fluorescence in flow cytometry/analysis, immunology, high throughput screening/drug discovery, DNA sequencing/arrays, genomics and proteomics. Typical applications might include studies of macromolecular dynamics and conformation, intracellular chemistry, and gene expression. The journal also publishes papers that describe the synthesis and characterization of new fluorophores, particularly those displaying unique sensitivities and/or optical properties. In addition to original articles, the Journal also publishes reviews, rapid communications, short communications, letters to the editor, topical news articles, and technical and design notes.
期刊最新文献
Novel Quinoline Chemosensor with Dual-Mode Fluorescence and DFT-Backed Mechanism for Mercury(II) Sensing. Mixed-Ligand Cu(II) Coordination Polymers Based on Bis(imidazole) and Naphthalenedicarboxylate for Sensitive Fe³⁺ Detection. Direct Spectrofluorimetric Method for Analysis of Bifenthrin and Resmethrin Pyrethroid Insecticides in Senegalese Surface and Groundwater. Supramolecular Self-Assembly and Synergistic AIE-TICT Emission in a Cyano-Substituted OPV Chromophore. Exploration of a Novel Thiadiazole Derivative: Design, Synthesis, Biological Evaluation (In Vitro and in Silico), and DFT Studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1