Bayesian phylogeographic analysis infers cross-border transmission dynamics of drug-resistant Salmonella Enteritidis.

IF 3.7 2区 生物学 Q2 MICROBIOLOGY Microbiology spectrum Pub Date : 2025-03-04 Epub Date: 2025-02-07 DOI:10.1128/spectrum.02292-24
Pei Yee Woh, Yehao Chen, Kevin Wing Hin Kwok, Jose Quiroga
{"title":"Bayesian phylogeographic analysis infers cross-border transmission dynamics of drug-resistant <i>Salmonella</i> Enteritidis.","authors":"Pei Yee Woh, Yehao Chen, Kevin Wing Hin Kwok, Jose Quiroga","doi":"10.1128/spectrum.02292-24","DOIUrl":null,"url":null,"abstract":"<p><p><i>Salmonella</i> Enteritidis (<i>S</i>. Enteritidis) stands as a leading cause of human salmonellosis worldwide with a tendency to spread through contaminated foodstuffs and animals. In Hong Kong, a significant proportion of food products are imported, and many cases are often caused by the consumption of contaminated food, hence making the geographical surveillance of drug-resistant <i>S</i>. Enteritidis important for strong public health and food safety measures. We analyzed the whole genomes of 207 <i>S</i>. Enteritidis from Hong Kong, Australia, Canada, mainland China, the United States of America, South Africa, Taiwan, and the United Kingdom to examine associated antimicrobial resistance and the transmission dynamics between continents. Phylogenetic cluster inferences and Bayesian phylogeographical analysis were performed. Overall, sequence type ST11 strains were dominant (92.8%, 192/207). Five phylogenomic clusters A to E were identified, where most isolates from mainland China and Hong Kong were in Cluster E. Among the 22 plasmid types identified, IncX1 was dominant in the Asian isolates. Most of the virulence genes were distributed in <i>Salmonella</i> pathogenicity islands -1 and -2, with two universal virulence operons responsible for the effector delivery system and bacterial cell adhesion. The phylogeographic inference analysis showed a statistically significant link between mainland China and Hong Kong with the highest relative migration rate (relativeGeoRates mean ± standard error = 2.93 ± .07, Bayes Factor [BF] = 1285.5], with some traceable to Canada (0.61 ± 0.03, BF = 6.9) and Australia (1.02 ± 0.04, BF = 4.2). Our analysis suggests hypothetical transmission of <i>S</i>. Enteritidis and its associated antimicrobial resistance across borders.</p><p><strong>Importance: </strong>Antimicrobial resistance and disease severity in nontyphoidal <i>Salmonella</i> have constituted a serious public health challenge worldwide. Drug-resistant <i>Salmonella</i> Enteritidis is a leading pathogen that causes human infections primarily through the consumption of contaminated food products. Previous research focuses on the whole-genome analysis of antimicrobial resistance and virulence factors in <i>S</i>. Enteritidis; however, details on how this bacterium localized, expanded, and diversified from location to location remain unknown. Our study for the first time addresses this gap by investigating the phylogeographic transmission to estimate the frequency and location of cross-border spread. By evidence-based inferred transmission, we aim to uncover novel insights into the dynamic spread of <i>S</i>. Enteritidis, revealing the route of emergence and migration. This research is crucial for enhancing our understanding of the control strategies to safeguard human health.</p>","PeriodicalId":18670,"journal":{"name":"Microbiology spectrum","volume":" ","pages":"e0229224"},"PeriodicalIF":3.7000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11878051/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology spectrum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/spectrum.02292-24","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Salmonella Enteritidis (S. Enteritidis) stands as a leading cause of human salmonellosis worldwide with a tendency to spread through contaminated foodstuffs and animals. In Hong Kong, a significant proportion of food products are imported, and many cases are often caused by the consumption of contaminated food, hence making the geographical surveillance of drug-resistant S. Enteritidis important for strong public health and food safety measures. We analyzed the whole genomes of 207 S. Enteritidis from Hong Kong, Australia, Canada, mainland China, the United States of America, South Africa, Taiwan, and the United Kingdom to examine associated antimicrobial resistance and the transmission dynamics between continents. Phylogenetic cluster inferences and Bayesian phylogeographical analysis were performed. Overall, sequence type ST11 strains were dominant (92.8%, 192/207). Five phylogenomic clusters A to E were identified, where most isolates from mainland China and Hong Kong were in Cluster E. Among the 22 plasmid types identified, IncX1 was dominant in the Asian isolates. Most of the virulence genes were distributed in Salmonella pathogenicity islands -1 and -2, with two universal virulence operons responsible for the effector delivery system and bacterial cell adhesion. The phylogeographic inference analysis showed a statistically significant link between mainland China and Hong Kong with the highest relative migration rate (relativeGeoRates mean ± standard error = 2.93 ± .07, Bayes Factor [BF] = 1285.5], with some traceable to Canada (0.61 ± 0.03, BF = 6.9) and Australia (1.02 ± 0.04, BF = 4.2). Our analysis suggests hypothetical transmission of S. Enteritidis and its associated antimicrobial resistance across borders.

Importance: Antimicrobial resistance and disease severity in nontyphoidal Salmonella have constituted a serious public health challenge worldwide. Drug-resistant Salmonella Enteritidis is a leading pathogen that causes human infections primarily through the consumption of contaminated food products. Previous research focuses on the whole-genome analysis of antimicrobial resistance and virulence factors in S. Enteritidis; however, details on how this bacterium localized, expanded, and diversified from location to location remain unknown. Our study for the first time addresses this gap by investigating the phylogeographic transmission to estimate the frequency and location of cross-border spread. By evidence-based inferred transmission, we aim to uncover novel insights into the dynamic spread of S. Enteritidis, revealing the route of emergence and migration. This research is crucial for enhancing our understanding of the control strategies to safeguard human health.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Microbiology spectrum
Microbiology spectrum Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
3.20
自引率
5.40%
发文量
1800
期刊介绍: Microbiology Spectrum publishes commissioned review articles on topics in microbiology representing ten content areas: Archaea; Food Microbiology; Bacterial Genetics, Cell Biology, and Physiology; Clinical Microbiology; Environmental Microbiology and Ecology; Eukaryotic Microbes; Genomics, Computational, and Synthetic Microbiology; Immunology; Pathogenesis; and Virology. Reviews are interrelated, with each review linking to other related content. A large board of Microbiology Spectrum editors aids in the development of topics for potential reviews and in the identification of an editor, or editors, who shepherd each collection.
期刊最新文献
A nomogram prediction model for embryo implantation outcomes based on the cervical microbiota of the infertile patients during IVF-FET. Multi-omics analysis of the mechanism of alfalfa and wheat-induced rumen flatulence in Xizang sheep. Differential effects of pine wilt disease on root endosphere, rhizosphere, and soil microbiome of Korean white pine. Diversity in chemical subunits and linkages: a key molecular determinant of microbial richness, microbiota interactions, and substrate utilization. Rapid detection of β-lactamase activity using the rapid Amp NP test.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1