Fasudil inhibits α-synuclein aggregation through ROCK-inhibition-mediated mechanisms.

IF 5.6 2区 医学 Q1 CLINICAL NEUROLOGY Neurotherapeutics Pub Date : 2025-02-05 DOI:10.1016/j.neurot.2025.e00544
Lucia Lage, Ana I Rodriguez-Perez, Jose Luis Labandeira-Garcia, Antonio Dominguez-Meijide
{"title":"Fasudil inhibits α-synuclein aggregation through ROCK-inhibition-mediated mechanisms.","authors":"Lucia Lage, Ana I Rodriguez-Perez, Jose Luis Labandeira-Garcia, Antonio Dominguez-Meijide","doi":"10.1016/j.neurot.2025.e00544","DOIUrl":null,"url":null,"abstract":"<p><p>ROCK inhibitors such as fasudil protected against dopaminergic degeneration and other neurodegenerative processes in several experimental models through inhibition of neuroinflammation and activation of survival signaling pathways, and clinical trials have been initiated. More recently, fasudil has been suggested to inhibit α-synuclein aggregation. However, this is controversial, particularly if it is a consequence of direct binding of the fasudil molecule to α-synuclein. We studied the mechanisms involved in the effects of fasudil on α-synuclein aggregation using the α-synuclein-T/V5-synphilin-1 model. Molecule-molecule interactions were studied using real time quaking inducing conversion (RT-QuiC). Fasudil decreased the number of cells with inclusions and the size of inclusions in dopaminergic neurons and glial cells, and inhibited α-synuclein aggregation and microglial endocytosis of aggregates. These changes were not due to changes in α-synuclein protein expression or phosphorylation and were related to ROCK inhibition rather than direct interaction with α-synuclein, as confirmed with a second ROCK inhibitor (Y27632) and ROCK gene silencing. We observed that ROCK inhibition downregulates several factors that are known to promote α-synuclein aggregation such as NADPH-oxidase-derived oxidative stress, intracellular calcium increase, and α-synuclein endocytosis, and promotes autophagy. The present results support that fasudil is a useful drug against Parkinson's disease progression. In addition to other reported neuroprotective properties, fasudil inhibits α-synuclein aggregation and microglial endocytosis of aggregates, which enhances the microglial inflammatory response. The effects of fasudil are mostly related to ROCK inhibition, which we have shown using two structurally different ROCK inhibitors and knockdown data, and further supported by using RT-QuiC.</p>","PeriodicalId":19159,"journal":{"name":"Neurotherapeutics","volume":" ","pages":"e00544"},"PeriodicalIF":5.6000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurotherapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neurot.2025.e00544","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

ROCK inhibitors such as fasudil protected against dopaminergic degeneration and other neurodegenerative processes in several experimental models through inhibition of neuroinflammation and activation of survival signaling pathways, and clinical trials have been initiated. More recently, fasudil has been suggested to inhibit α-synuclein aggregation. However, this is controversial, particularly if it is a consequence of direct binding of the fasudil molecule to α-synuclein. We studied the mechanisms involved in the effects of fasudil on α-synuclein aggregation using the α-synuclein-T/V5-synphilin-1 model. Molecule-molecule interactions were studied using real time quaking inducing conversion (RT-QuiC). Fasudil decreased the number of cells with inclusions and the size of inclusions in dopaminergic neurons and glial cells, and inhibited α-synuclein aggregation and microglial endocytosis of aggregates. These changes were not due to changes in α-synuclein protein expression or phosphorylation and were related to ROCK inhibition rather than direct interaction with α-synuclein, as confirmed with a second ROCK inhibitor (Y27632) and ROCK gene silencing. We observed that ROCK inhibition downregulates several factors that are known to promote α-synuclein aggregation such as NADPH-oxidase-derived oxidative stress, intracellular calcium increase, and α-synuclein endocytosis, and promotes autophagy. The present results support that fasudil is a useful drug against Parkinson's disease progression. In addition to other reported neuroprotective properties, fasudil inhibits α-synuclein aggregation and microglial endocytosis of aggregates, which enhances the microglial inflammatory response. The effects of fasudil are mostly related to ROCK inhibition, which we have shown using two structurally different ROCK inhibitors and knockdown data, and further supported by using RT-QuiC.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Neurotherapeutics
Neurotherapeutics 医学-神经科学
CiteScore
11.00
自引率
3.50%
发文量
154
审稿时长
6-12 weeks
期刊介绍: Neurotherapeutics® is the journal of the American Society for Experimental Neurotherapeutics (ASENT). Each issue provides critical reviews of an important topic relating to the treatment of neurological disorders written by international authorities. The Journal also publishes original research articles in translational neuroscience including descriptions of cutting edge therapies that cross disciplinary lines and represent important contributions to neurotherapeutics for medical practitioners and other researchers in the field. Neurotherapeutics ® delivers a multidisciplinary perspective on the frontiers of translational neuroscience, provides perspectives on current research and practice, and covers social and ethical as well as scientific issues.
期刊最新文献
Carnosine supplementation improves cognitive outcomes in younger participants of the NEAT trial. Fasudil inhibits α-synuclein aggregation through ROCK-inhibition-mediated mechanisms. 3,3'-Diindolylmethane improves pathology and neurological outcome following traumatic brain injury. From a clinically relevant pain target to a possible analgesic treatment strategy. Fibrinogen degradation products exacerbate alpha-synuclein aggregation by inhibiting autophagy via downregulation of Beclin1 in multiple system atrophy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1