David M Henke, Alexander Renwick, Joseph R Zoeller, Jitendra K Meena, Nicholas J Neill, Elizabeth A Bowling, Kristen L Meerbrey, Thomas F Westbrook, Lukas M Simon
{"title":"Bio-primed machine learning to enhance discovery of relevant biomarkers.","authors":"David M Henke, Alexander Renwick, Joseph R Zoeller, Jitendra K Meena, Nicholas J Neill, Elizabeth A Bowling, Kristen L Meerbrey, Thomas F Westbrook, Lukas M Simon","doi":"10.1038/s41698-025-00825-9","DOIUrl":null,"url":null,"abstract":"<p><p>Precision medicine relies on identifying reliable biomarkers for gene dependencies to tailor individualized therapeutic strategies. The advent of high-throughput technologies presents unprecedented opportunities to explore molecular disease mechanisms but also challenges due to high dimensionality and collinearity among features. Traditional statistical methods often fall short in this context, necessitating novel computational approaches that harness the full potential of big data in bioinformatics. Here, we introduce a novel machine learning approach extending the Least Absolute Shrinkage and Selection Operator (LASSO) regression framework to incorporate biological knowledge, such as protein-protein interaction databases, into the regularization process. This bio-primed approach prioritizes variables that are both statistically significant and biologically relevant. Applying our method to multiple dependency datasets, we identified biomarkers which traditional methods overlooked. Our biologically informed LASSO method effectively identifies relevant biomarkers from high-dimensional collinear data, bridging the gap between statistical rigor and biological insight. This method holds promise for advancing personalized medicine by uncovering novel therapeutic targets and understanding the complex interplay of genetic and molecular factors in disease.</p>","PeriodicalId":19433,"journal":{"name":"NPJ Precision Oncology","volume":"9 1","pages":"39"},"PeriodicalIF":6.8000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Precision Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41698-025-00825-9","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Precision medicine relies on identifying reliable biomarkers for gene dependencies to tailor individualized therapeutic strategies. The advent of high-throughput technologies presents unprecedented opportunities to explore molecular disease mechanisms but also challenges due to high dimensionality and collinearity among features. Traditional statistical methods often fall short in this context, necessitating novel computational approaches that harness the full potential of big data in bioinformatics. Here, we introduce a novel machine learning approach extending the Least Absolute Shrinkage and Selection Operator (LASSO) regression framework to incorporate biological knowledge, such as protein-protein interaction databases, into the regularization process. This bio-primed approach prioritizes variables that are both statistically significant and biologically relevant. Applying our method to multiple dependency datasets, we identified biomarkers which traditional methods overlooked. Our biologically informed LASSO method effectively identifies relevant biomarkers from high-dimensional collinear data, bridging the gap between statistical rigor and biological insight. This method holds promise for advancing personalized medicine by uncovering novel therapeutic targets and understanding the complex interplay of genetic and molecular factors in disease.
期刊介绍:
Online-only and open access, npj Precision Oncology is an international, peer-reviewed journal dedicated to showcasing cutting-edge scientific research in all facets of precision oncology, spanning from fundamental science to translational applications and clinical medicine.