María J Cáceres, José A Cañizo, Alejandro Ramos-Lora
{"title":"Sequence of pseudoequilibria describes the long-time behavior of the nonlinear noisy leaky integrate-and-fire model with large delay.","authors":"María J Cáceres, José A Cañizo, Alejandro Ramos-Lora","doi":"10.1103/PhysRevE.110.064308","DOIUrl":null,"url":null,"abstract":"<p><p>There is a wide range of mathematical models that describe populations of large numbers of neurons. In this article, we focus on nonlinear noisy leaky integrate-and-fire (NNLIF) models that describe neuronal activity at the level of the membrane potential. We introduce a sequence of states, which we call pseudoequilibria, and give evidence of their defining role in the behavior of the NNLIF system when a significant synaptic delay is considered. The advantage is that these states are determined solely by the system's parameters and are derived from a sequence of firing rates that result from solving a recurrence equation. We propose a strategy to show convergence to an equilibrium for a weakly connected system with large transmission delay, based on following the sequence of pseudoequilibria. Unlike direct entropy dissipation methods, this technique allows us to see how a large delay favors convergence. We present a detailed numerical study to support our results. This study helps us understand, among other phenomena, the appearance of periodic solutions in strongly inhibitory networks.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":"110 6-1","pages":"064308"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.110.064308","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
There is a wide range of mathematical models that describe populations of large numbers of neurons. In this article, we focus on nonlinear noisy leaky integrate-and-fire (NNLIF) models that describe neuronal activity at the level of the membrane potential. We introduce a sequence of states, which we call pseudoequilibria, and give evidence of their defining role in the behavior of the NNLIF system when a significant synaptic delay is considered. The advantage is that these states are determined solely by the system's parameters and are derived from a sequence of firing rates that result from solving a recurrence equation. We propose a strategy to show convergence to an equilibrium for a weakly connected system with large transmission delay, based on following the sequence of pseudoequilibria. Unlike direct entropy dissipation methods, this technique allows us to see how a large delay favors convergence. We present a detailed numerical study to support our results. This study helps us understand, among other phenomena, the appearance of periodic solutions in strongly inhibitory networks.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.