Multifaceted skeletal effects of sevelamer carbonate in a secondary hyperparathyroidism model.

IF 3 3区 医学 Q2 ENDOCRINOLOGY & METABOLISM Endocrine Pub Date : 2025-02-07 DOI:10.1007/s12020-025-04180-4
Shivani Sharma, Saroj Kumar, Manendra Singh Tomar, Divya Chauhan, Sreyanko Sadhukhan, Chirag Kulkarni, Swati Rajput, Konica Porwal, Rajdeep Guha, Ashutosh Shrivastava, Jiaur R Gayen, Navin Kumar, Naibedya Chattopadhyay
{"title":"Multifaceted skeletal effects of sevelamer carbonate in a secondary hyperparathyroidism model.","authors":"Shivani Sharma, Saroj Kumar, Manendra Singh Tomar, Divya Chauhan, Sreyanko Sadhukhan, Chirag Kulkarni, Swati Rajput, Konica Porwal, Rajdeep Guha, Ashutosh Shrivastava, Jiaur R Gayen, Navin Kumar, Naibedya Chattopadhyay","doi":"10.1007/s12020-025-04180-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Hyperphosphatemia leads to abnormal mineralization of bones and soft tissues in patients with chronic kidney disease-induced secondary hyperparathyroidism (CKD-SHPT). Sevelamer lowers phosphate levels by binding to dietary phosphate in the gastrointestinal system, forming new bone and reducing the risk of renal osteodystrophy and fracture. However, the influence of sevelamer carbonate (SevC) on bone microarchitecture, material qualities, and mechanical behavior is unknown in CKD-SHPT conditions.</p><p><strong>Material and methods: </strong>We utilized a rat model of CKD-induced hyperphosphatemia by feeding a 1.8% high-phosphate diet to 5/6 nephrectomized rats to test the effects of SevC on skeletal quality and strength, employing microCT, Fourier transform infrared spectroscopy (FTIR), 3-point bending, nanoindentation, and compression tests.</p><p><strong>Results: </strong>SevC preserved mineral homeostasis and reduced PTH, and FGF-23 levels in CKD-SHPT rats. SevC mitigated the serum renal parameters, pyrophosphate levels, and indole acetic acid. In CKD-SHPT rats, SevC reduced hyperphosphatemia, improved the mineralization defect, and upregulated mineralization-promoting genes like ankyrin-1, ectonucleotide-pyrophosphatase/phosphodiesterase-1, tissue non-specific alkaline phosphatase, phosphate-regulating endopeptidase X-linked, dentin matrix protein-1, and matrix extracellular phosphoglycoprotein. In the cortical bones of CKD-SHPT rats, SevC increased cortical mass and thickness, decreased porosity by likely decreasing cortical bone remodeling induced by high PTH, and increased osteocyte preservation. SevC mitigated all of the alterations in the mineral and matrix composition of CKD-SHPT rats, including decreased collagen-maturity, mineral-to-matrix ratio, and increased carbonate substitution of hydroxyapatite crystals. SevC enhanced bone strength and mechanical behavior in CKD-SHPT rats at a macro (three-point bending) and nano (nanoindentation) scales.</p><p><strong>Conclusion: </strong>These findings in CKD-SHPT rats suggest that SevC improves bone mechanical properties at various levels by decreasing serum pyrophosphate, empty lacunae, and enhancing renal clearance of indole acetic acid, organized mineral-matrix deposition, and osteocyte number by suppressing cortical remodeling.</p>","PeriodicalId":49211,"journal":{"name":"Endocrine","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endocrine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12020-025-04180-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Hyperphosphatemia leads to abnormal mineralization of bones and soft tissues in patients with chronic kidney disease-induced secondary hyperparathyroidism (CKD-SHPT). Sevelamer lowers phosphate levels by binding to dietary phosphate in the gastrointestinal system, forming new bone and reducing the risk of renal osteodystrophy and fracture. However, the influence of sevelamer carbonate (SevC) on bone microarchitecture, material qualities, and mechanical behavior is unknown in CKD-SHPT conditions.

Material and methods: We utilized a rat model of CKD-induced hyperphosphatemia by feeding a 1.8% high-phosphate diet to 5/6 nephrectomized rats to test the effects of SevC on skeletal quality and strength, employing microCT, Fourier transform infrared spectroscopy (FTIR), 3-point bending, nanoindentation, and compression tests.

Results: SevC preserved mineral homeostasis and reduced PTH, and FGF-23 levels in CKD-SHPT rats. SevC mitigated the serum renal parameters, pyrophosphate levels, and indole acetic acid. In CKD-SHPT rats, SevC reduced hyperphosphatemia, improved the mineralization defect, and upregulated mineralization-promoting genes like ankyrin-1, ectonucleotide-pyrophosphatase/phosphodiesterase-1, tissue non-specific alkaline phosphatase, phosphate-regulating endopeptidase X-linked, dentin matrix protein-1, and matrix extracellular phosphoglycoprotein. In the cortical bones of CKD-SHPT rats, SevC increased cortical mass and thickness, decreased porosity by likely decreasing cortical bone remodeling induced by high PTH, and increased osteocyte preservation. SevC mitigated all of the alterations in the mineral and matrix composition of CKD-SHPT rats, including decreased collagen-maturity, mineral-to-matrix ratio, and increased carbonate substitution of hydroxyapatite crystals. SevC enhanced bone strength and mechanical behavior in CKD-SHPT rats at a macro (three-point bending) and nano (nanoindentation) scales.

Conclusion: These findings in CKD-SHPT rats suggest that SevC improves bone mechanical properties at various levels by decreasing serum pyrophosphate, empty lacunae, and enhancing renal clearance of indole acetic acid, organized mineral-matrix deposition, and osteocyte number by suppressing cortical remodeling.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Endocrine
Endocrine ENDOCRINOLOGY & METABOLISM-
CiteScore
6.50
自引率
5.40%
发文量
295
审稿时长
1.5 months
期刊介绍: Well-established as a major journal in today’s rapidly advancing experimental and clinical research areas, Endocrine publishes original articles devoted to basic (including molecular, cellular and physiological studies), translational and clinical research in all the different fields of endocrinology and metabolism. Articles will be accepted based on peer-reviews, priority, and editorial decision. Invited reviews, mini-reviews and viewpoints on relevant pathophysiological and clinical topics, as well as Editorials on articles appearing in the Journal, are published. Unsolicited Editorials will be evaluated by the editorial team. Outcomes of scientific meetings, as well as guidelines and position statements, may be submitted. The Journal also considers special feature articles in the field of endocrine genetics and epigenetics, as well as articles devoted to novel methods and techniques in endocrinology. Endocrine covers controversial, clinical endocrine issues. Meta-analyses on endocrine and metabolic topics are also accepted. Descriptions of single clinical cases and/or small patients studies are not published unless of exceptional interest. However, reports of novel imaging studies and endocrine side effects in single patients may be considered. Research letters and letters to the editor related or unrelated to recently published articles can be submitted. Endocrine covers leading topics in endocrinology such as neuroendocrinology, pituitary and hypothalamic peptides, thyroid physiological and clinical aspects, bone and mineral metabolism and osteoporosis, obesity, lipid and energy metabolism and food intake control, insulin, Type 1 and Type 2 diabetes, hormones of male and female reproduction, adrenal diseases pediatric and geriatric endocrinology, endocrine hypertension and endocrine oncology.
期刊最新文献
Effect of semaglutide with obesity or overweight individuals without diabetes: an Umbrella review of systematic reviews. Comparison of the clinical significance of lymphocyte-based inflammatory indices between the two major subtypes of primary aldosteronism. The monocyte/HDLc ratio and LDLc are two independent predictors of the response of Graves' ophthalmopathy patients to parenteral glucocorticoids. Intricate diagnosis due to falsely elevated testosterone levels by immunoassay. Multifaceted skeletal effects of sevelamer carbonate in a secondary hyperparathyroidism model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1