Qiong Xiang, Hu Lin, Jia-Sheng Tao, Chuan-Jun Fu, Li-Ni Liu, Jing Deng, Xian-Hui Li
{"title":"MiR-18a-LncRNA NONRATG-022419 pairs targeted PRG-1 regulates diabetic induced cognitive impairment by regulating NGF\\BDNF-Trkb signaling pathway.","authors":"Qiong Xiang, Hu Lin, Jia-Sheng Tao, Chuan-Jun Fu, Li-Ni Liu, Jing Deng, Xian-Hui Li","doi":"10.1186/s12953-025-00239-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Diabetic encephalopathy (DE) is considered as one of the complications of diabetes,which is associated with cognitive impairment in the pathological process of development. Up to now, phospholipid phosphatase related 4 (Plppr4), also known as plasticity related gene 1 (PRG-1) has been revealed its important role in neuroplasticity. However, the underlying mechanisms of Plppr4 on the basis of diabetic-induced cognitive dysfunction (DCD) are still unknown. The aim of current study was to provide insight into molecular mechanism and cellular heterogeneity underlying DCD, and investigate the functional role of PRG-1 involved in this process.</p><p><strong>Methods: </strong>Combined Single-cell RNA sequencing (scRNA-seq) and RNA transcriptome analysis, the distinct sub-populations, functional heterogeneity as well as potential enriched signaling pathways of hippocampal cells could be elucidated.</p><p><strong>Results: </strong>We identified the sub-cluster of type I spiral ganglion neurons expressed marker gene as Amigo2 in cluster8 and Cnr1 in cluster 9 of hippocampal cells from DCD and the effect of those on neuronal cells interaction. We also found that PRG-1 was involved in the synaptic plasticity regulation of hippocampus via NGF\\BDNF-Trkb signaling pathway. In high glucose induced HT22 cells injury model in vitro, we investigated that down-regulated PRG-1 along with down-regulated BDNF and also decreased expression of synapsin-1, PSD-95, SYN which are related to synaptic plasticity; Meanwhile, the Prg-1 targeted miR-18a-LncRNA NONRATG-022419 pairs related with significantly down-regulated expression of PRG-1.</p><p><strong>Conclusion: </strong>This study revealed the synaptic plasticity regulation of PRG-1 in DCD, and might provide the therapeutic target and potential biomarkers for early interventions in DCD patients.</p>","PeriodicalId":20857,"journal":{"name":"Proteome Science","volume":"23 1","pages":"1"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11800523/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteome Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12953-025-00239-2","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Diabetic encephalopathy (DE) is considered as one of the complications of diabetes,which is associated with cognitive impairment in the pathological process of development. Up to now, phospholipid phosphatase related 4 (Plppr4), also known as plasticity related gene 1 (PRG-1) has been revealed its important role in neuroplasticity. However, the underlying mechanisms of Plppr4 on the basis of diabetic-induced cognitive dysfunction (DCD) are still unknown. The aim of current study was to provide insight into molecular mechanism and cellular heterogeneity underlying DCD, and investigate the functional role of PRG-1 involved in this process.
Methods: Combined Single-cell RNA sequencing (scRNA-seq) and RNA transcriptome analysis, the distinct sub-populations, functional heterogeneity as well as potential enriched signaling pathways of hippocampal cells could be elucidated.
Results: We identified the sub-cluster of type I spiral ganglion neurons expressed marker gene as Amigo2 in cluster8 and Cnr1 in cluster 9 of hippocampal cells from DCD and the effect of those on neuronal cells interaction. We also found that PRG-1 was involved in the synaptic plasticity regulation of hippocampus via NGF\BDNF-Trkb signaling pathway. In high glucose induced HT22 cells injury model in vitro, we investigated that down-regulated PRG-1 along with down-regulated BDNF and also decreased expression of synapsin-1, PSD-95, SYN which are related to synaptic plasticity; Meanwhile, the Prg-1 targeted miR-18a-LncRNA NONRATG-022419 pairs related with significantly down-regulated expression of PRG-1.
Conclusion: This study revealed the synaptic plasticity regulation of PRG-1 in DCD, and might provide the therapeutic target and potential biomarkers for early interventions in DCD patients.
期刊介绍:
Proteome Science is an open access journal publishing research in the area of systems studies. Proteome Science considers manuscripts based on all aspects of functional and structural proteomics, genomics, metabolomics, systems analysis and metabiome analysis. It encourages the submissions of studies that use large-scale or systems analysis of biomolecules in a cellular, organismal and/or environmental context.
Studies that describe novel biological or clinical insights as well as methods-focused studies that describe novel methods for the large-scale study of any and all biomolecules in cells and tissues, such as mass spectrometry, protein and nucleic acid microarrays, genomics, next-generation sequencing and computational algorithms and methods are all within the scope of Proteome Science, as are electron topography, structural methods, proteogenomics, chemical proteomics, stem cell proteomics, organelle proteomics, plant and microbial proteomics.
In spite of its name, Proteome Science considers all aspects of large-scale and systems studies because ultimately any mechanism that results in genomic and metabolomic changes will affect or be affected by the proteome. To reflect this intrinsic relationship of biological systems, Proteome Science will consider all such articles.